Abstract:
A method for controlling movement of movable object having a plurality of movable subcomponents comprises receiving an instruction configured to generate a defined movement of a selected subcomponent of the movable object between a first state and a second state. The method further comprises determining whether execution of the defined movement results in the selected subcomponent leaving a motion space associated with the selected subcomponent. The motion space is defined by a motion space boundary. The method further comprises producing a modified instruction configured to generate a modified movement of the selected subcomponent between the first state and the second state. Execution of the modified movement results in the selected subcomponent remaining within the motion space. At least a portion of the modified movement deviates from the defined movement.
Abstract:
A method for controlling movement of movable object having a plurality of movable subcomponents comprises receiving an instruction configured to generate a defined movement of a selected subcomponent of the movable object between a first state and a second state. The method further comprises determining whether execution of the defined movement results in the selected subcomponent leaving a motion space associated with the selected subcomponent. The motion space is defined by a motion space boundary. The method further comprises producing a modified instruction configured to generate a modified movement of the selected subcomponent between the first state and the second state. Execution of the modified movement results in the selected subcomponent remaining within the motion space. At least a portion of the modified movement deviates from the defined movement.
Abstract:
A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element. The method comprises encoding a first and a second one of the construction elements as corresponding data structures, each representing the connection elements of the corresponding construction element, and each of the connection elements having associated with it a predetermined connection type. The method further comprises determining a first connection element of the first construction element and a second connection element of the second construction element located in a predetermined proximity of each other; and retrieving connectivity information of the corresponding connection types of the first and second connection elements indicative of whether the first and second connection elements provide a connection between the first and the second construction element.
Abstract:
A “construction set” consisting of active and passive parts connected by joints that can be manipulated to form an movable articulated assembly representing things like animals and skeletons. Each active part includes a position sensor for acquiring and storing position data specifying a sequence of positions assumed by the active part as the assembly is reshaped, and a controllable drive motor for moving the active part relative to a connected part in accordance with the position data.