Abstract:
An autonomous ground vehicle for agricultural plant and soil management operations. According to some embodiments, autonomous ground vehicle includes: one or more camera units configured to generate images, an energy storage unit, a solar panel unit, a solar panel control mechanism, a first mechanical arm having a first end effector, an electronic memory storage medium comprising computer-executable instructions; one or more processors in electronic communication with the electronic memory storage medium, configured to execute the computer-executable instructions stored in an electronic memory storage medium for implementing a method of for agricultural plant and soil management operations.
Abstract:
Disclosed are systems and methods for manufacturing energy relays for energy directing systems. Methods and devices are disclosed for forming random and non-random patterns of energy relay materials with energy localization properties. Methods and devices are disclosed for forming energy relays of different shapes.
Abstract:
An autonomous solar module installation platform can be used for solar module installation onto a solar tracker. The autonomous solar module installation platform can include an autonomous ground vehicle and a robotic arm for the solar module installation onto the solar tracker. The autonomous ground vehicle can autonomously drive itself to the solar tracker using a global positioning system and align itself with the solar tracker using at least a vision system in order to place one or more solar modules onto the solar tracker.
Abstract:
A gas receiver configured to heat a working fluid is disclosed. The receiver comprises an aperture, a light absorber, and a pre-heater interposed between the aperture and light absorber. The pre-heater is transparent to visible light and opaque to infrared. The pre-heater in the preferred embodiment comprises quartz in the form of a plurality of quartz plates or quartz tubes, for example, that are oriented substantially parallel to one another. The quartz plates are separated from one another by a gap to permit air to pass into the receiver cavity, while the quartz tubes are hollow to permit air to pass therethrough. The quartz plates or tubes are configured to transmit visible light from the aperture to the light absorber, and to absorb infrared radiation passing from the light absorber toward the aperture. Since the quartz structures absorb infrared, they serve to capture blackbody radiation emitted from the absorber and use that energy to pre-heat air before it passes into the absorber.
Abstract:
A heliostat apparatus includes one mirror frame supporting a reflecting mirror; a pair of north-south rotational shafts to rotate the mirror frame in the north-south direction; an east-west rotational shaft to rotate the mirror frame in the east-west direction with the north-south direction as the rotational axis direction; a pair of arms projecting from the east-west rotational shaft to the east and west; an east-west rotational shaft support allowing east-west rotational shaft axial rotation; and the north-south rotational shafts positioned to face each other on the ends of the arms. The mirror frame rotation, etc. as an integrated unit in the east-west direction with the east-west rotational shaft as the rotational axis adjusts a reflecting mirror reflecting surface east-west angle. With the north-south rotational shaft as the rotational axis, the mirror frame rotation in the north-south direction adjusts the north-south angle of at least one reflecting mirror reflecting surface.
Abstract:
A heliostat apparatus includes one mirror frame supporting a reflecting mirror; a pair of north-south rotational shafts to rotate the mirror frame in the north-south direction; an east-west rotational shaft to rotate the mirror frame in the east-west direction with the north-south direction as the rotational axis direction; a pair of arms projecting from the east-west rotational shaft to the east and west; an east-west rotational shaft support allowing east-west rotational shaft axial rotation; and the north-south rotational shafts positioned to face each other on the ends of the arms. The mirror frame rotation, etc. as an integrated unit in the east-west direction with the east-west rotational shaft as the rotational axis adjusts a reflecting mirror reflecting surface east-west angle. With the north-south rotational shaft as the rotational axis, the mirror frame rotation in the north-south direction adjusts the north-south angle of at least one reflecting mirror reflecting surface.
Abstract:
An accessory for a solar panel assembly includes a bracket defining an elongated portion extending in a first direction and including a slot, a connector coupled to the bracket and configured to engage at least one panel frame of the solar panel assembly, and a fence member including a first portion and a second portion. The first portion including a planar surface oriented at an angle relative to the bracket portion, and the second portion includes a projection that removably engages the slot.