Abstract:
An axial swirler for a gas turbine burner includes a vane ring with a plurality of swirler vanes circumferentially distributed around a swirler axis. Each of the swirler vanes includes a trailing edge. In order to achieve a controlled distribution of the exit flow velocity profile and/or the fuel equivalence ratio in the radial direction. The trailing edge is discontinuous with the trailing edge having a discontinuity at a predetermined radius.
Abstract:
A mixing tube assembly having an inlet end and an outlet end and being adapted for use in a burner assembly. The mixing tube assembly comprises a substantially cylindrical outer wall which defines an interior open space. The mixing tube assembly also comprises a turbulator that is disposed in the interior open space defined by the substantially cylindrical outer wall and a flow straightening device that is disposed downstream from the turbulator. A method for mixing fuel and air in a burner assembly comprising providing a mixing tube assembly. The preferred method also comprises conveying fuel and air from the inlet end of the mixing tube assembly to the outlet end of the mixing tube assembly and straightening the gaseous fuel and air mixture flow in the mixing tube assembly.
Abstract:
Burners, such as all kinds of fuel oil, gas and powdered coal, have combustion chambers for stabilizing combustion and air distribution. The invention discloses a forced reversal combustion chamber, which has a combustion chamber body, configured as a hollow cavity a plurality of swirl vanes for delivering combustion air into the combustion chamber, correspondingly provided on interior side of flame outlet end of the combustion chamber; in the middle of inner end of the combustion chamber, a fuel nozzle is provided, which inserts into interior wall of the combustion chamber and outlet of which extends through the interior wall of the combustion chamber; outlet end of the combustion chamber after mixing air and fuel is flame outlet. The forced reversal combustion chamber of the invention can provide good flame stabilization, high burn-off rate of fuel and good environmental protection property.
Abstract:
The invention provides a rotation-suspension smelting method, in which a powdered sulfide concentrate and an oxygen-containing gas are sprayed into a space within a high-temperature reaction tower through an equipment. The oxygen-containing gas is divided into two parts before entering the equipment: the second oxygen-containing gas is sprayed in the form of an annular direct flow into the reaction tower and forms a bell-shaped wind curtain; and the first oxygen-containing gas is transformed into a rotation-jet via the equipment and jetted into the center of the wind curtain. In the annular space between the two gas flows, the concentrate entering in a direction deviated towards the center is drawn in the rotation-jet, and a high-temperature off-gas from the bottom of the reaction tower is also sucked in, forming a gas-particle mixed two-phase rotation-jet. The sulfide concentrate is ignited by the high temperature, namely, starting a violent combustion reaction with oxygen and releasing SO2-rich off-gas, at the same time, a mixed melt containing matte (or metal) and slag is formed; and the matte (or metal) is finally separated from the slag at the bottom of the reaction tower, thereby completing the metallurgical process. To achieve the process object, the invention also provides a metallurgical equipment and a rotation-suspension smelting burner thereof.
Abstract:
In known types of injection systems for a turbine engine combustion chamber, the secondary fuel flow strikes the venturi before entering into the combustor. A new injection system is disclosed to overcome this problem, comprising a first annular deflector surrounded by the bowl of the injection system and extending in the downstream direction from the downstream transverse surface that delimits the downstream side of the swirler. This first deflector has a free downstream end offset in the upstream direction from a downstream end of the bowl, so as to guide an air film output from the first orifices formed through the bowl. The internal radius ψ of the cross section of the first annular deflector increases from the downstream transverse surface as far as the downstream end of the first annular deflector.
Abstract:
A fuel-air mixer for use with a combustor is provided. The fuel-air mixer includes an outer ring, an intermediate hub disposed coaxially within the outer ring such that a first plenum is formed therebetween, and an inner hub disposed coaxially within the intermediate hub such that a second plenum is formed therebetween. A first swirler including a plurality of first swirler vanes is positioned between the outer ring and the intermediate hub, wherein the first swirler is configured to rotate fluid flowing therethrough in a first direction. A second swirler including a plurality of second swirler vanes is positioned between the intermediate hub and the inner hub, wherein the second swirler is configured to rotate fluid flowing therethrough in a second direction. A plurality of fuel injection conduits are also defined within the fuel-air mixer for channeling fuel to the first and second plenums.
Abstract:
In some aspects, a gas turbine combustor assembly is arranged around a longitudinal axis. The gas turbine combustor comprises a first fuel/air mixer assembly, the mixer assembly comprising a first fuel injector and a plurality of first mixer elements, each mixer element defining an air flow passage therethrough having an outlet in a first plane. A second fuel/air mixer assembly comprises a second fuel injector and a plurality of second mixer elements, and each second mixer element defines an air flow passage therethrough having an outlet in a second plane, longitudinally offset from the first plane.
Abstract:
Separation device comprising a swirler (1, 20, 30) of a sheet material comprising a plurality of vanes (4) with a flow entrance side edge (6) defining an entrance angle (α) and a flow exit side edge (8) defining an exit angle (β). The flow entrance side edge and flow exit side edge extend from a center section (3) to a peripheral edge (9), which extends between end points of the flow entrance edge and the flow exit edge. The entrance angle is larger than the exit angle. The swirler can me made from a blank (10) by cutting out cutting lines defining the peripheral edges, the flow entrance edges and flow exit edges of a plurality of vanes (4) of a swirler. The vanes are subsequently bent to define the exit and entrance angles. Optionally, the swirler can be stacked with one or more correspondingly cut and bent swirlers to form a single stacked swirler (20, 30).
Abstract:
A burner for a gas turbine engine is provided. The burner includes a radial swirler for creating a swirling fuel/air mix, a combustion chamber where combustion of the swirling fuel/air mix occurs, and a pre-chamber located between the radial swirler and the combustion chamber. The radial swirler includes a plurality of vanes arranged in a circle, generally radially inwardly extending flow slots are defined between adjacent vanes in the circle, each flow slot includes a radially outer inlet end, a radially inner outlet end, first and second generally radially inwardly extending sides provided by adjacent vanes, and a base and top. A flow slot includes a first gas fuel injection hole in its base and a flow slot includes a second gas fuel injection hole in its first side wherein the amounts of gas fuel injected via the first and second gas fuel injection holes are independently variable.
Abstract:
An axial swirler, in particular for premixing of oxidizer and fuel in gas turbines, includes a series of swirl vanes with a streamline cross-section. Each swirl vane has a leading edge, a trailing edge, and a suction side and a pressure side extending each between the leading and trailing edges. The swirl vanes are arranged around a swirler axis, wherein the leading edges extend essentially in radial direction. Flow slots are formed between the suction side of each swirl vane and the pressure side of its nearest neighboring swirl vane. Furthermore, at least one swirl vane has a discharge flow angle between a tangent to its camber line at its trailing edge and the swirler axis that is monotonically increasing with increasing radial distance from the swirler axis. The invention also relates to a burner with such a swirler and a method of operating the burner.