Abstract:
A headlamp assembly comprising a housing forming an internal chamber and forming an opening to one side, at least a first light source having a first illumination axis, the first light source mounted in a central portion of the internal chamber substantially at a first depth, at least a second light source having a second illumination axis, the second light source mounted in a circumferential portion of the chamber substantially at a second depth wherein the first depth is greater than the second depth, a first aspherical lens formed about a first optic axis, the first aspherical lens mounted within the opening with the first optic axis aligned with the first illumination axis and a second aspherical lens formed about a second optic axis, the second aspherical lens mounted within the opening with the second optic axis aligned with the second illumination axis.
Abstract:
A headlamp assembly comprising a housing forming an internal chamber and forming an opening to one side, at least a first light source having a first illumination axis, the first light source mounted in a central portion of the internal chamber substantially at a first depth, at least a second light source having a second illumination axis, the second light source mounted in a circumferential portion of the chamber substantially at a second depth wherein the first depth is greater than the second depth, a first aspherical lens formed about a first optic axis, the first aspherical lens mounted within the opening with the first optic axis aligned with the first illumination axis and a second aspherical lens formed about a second optic axis, the second aspherical lens mounted within the opening with the second optic axis aligned with the second illumination axis.
Abstract:
A signal alignment monitoring system is provided. The system includes a signal assembly including at least one signal lamp. The system also includes an alignment monitoring apparatus coupled to the signal assembly. The alignment monitoring apparatus includes a source for emitting electromagnetic energy and a detector for sensing electromagnetic energy emitted by the source to facilitate determining an alignment of the signal assembly.
Abstract:
A circuit for driving and monitoring a light signal, in particular an LED signal, has an actuating part for outputting a process voltage, and a signal transmitter for setting current windows for daytime operation and nighttime operation. In order to achieve a high degree of independence between the circuit and variable parameters, in particular the power consumption of the lighting elements, the signal transmitter has a regulator which is connected to the monitoring logic via brightness sensors for measurement of the brightness of the light signal, with the monitoring logic producing a daytime or nighttime nominal value of the current window for the regulator.
Abstract:
An LED signal lamp comprises at least two separate LED arrays which have separate power feeds and wherein the LEDs of the arrays are positioned with respect to each other such that when lit they provide a composite light signal output and such that when the LEDs of only one of the two arrays are lit they provide a light signal with a visible distinctive pattern. A distinctive pattern is revealed, either lit or dark. Typically this pattern may be formed as a letter such as “X” or “F” or may be formed as a striped effect, for example.An LED signal apparatus comprises input signal power supply terminals 7,8 for the apparatus; a series connection of switch means S1 to S4 and a ballast load 6 connected across the supply terminals 7,8; an LED signal lamp 1,2 connected to the terminals to be supplied with current therefrom; and switch operating means D1 to D4, in the supply path to the LED lamp, for controlling the state of the switch means S1 to S4 in the series connection, whereby total failure or substantially total failure of the current to the LED signal lamp results in said switch operating means D1 to D4 causing said switch means to open to disconnect the ballast load 6 from power from the supply terminals 7,8.
Abstract:
A high power LED lamp and method for retrofitting conventional traffic signal lamps. The LED lamp includes a housing, a power supply disposed in the housing, a plurality of LEDs mounted to a substantially planar mounting surface in the housing and electrically connected to the power supply for producing diverging light, and a threaded electrical connector extending from the housing. The method includes replacing a conventional incandescent light bulb with the LED lamp, and installing a Fresnel lens inside the traffic signal lamp that collimates and just fills and illuminates the outer lens of the traffic signal lamp.
Abstract:
A light device including side emitting status indicators that provide a true indication of whether light is being output in a primary output direction. The light device includes a light source of at least one LED configured to generate light in the primary output direction. The light generated by the at least one LEDs passes through a lens device, that may also reflect a portion of the light generated from the at least one LED. Collection optics are provided to capture a portion of the generated light and/or the reflected portion of the light generated from the light source, and are configured to output the captured generated and/or reflected light in a direction other than the primary direction, i.e., in a direction for the side emitting status indicators.
Abstract:
LED lamp circuitry that emulates an incandescent lamp's behaviour upon remote verification of the LED lamp. The invention presents a fuse blow-out circuit and a cold filament detection circuit permitting the use of LED lamps in applications, such as railway signal light applications, where there is a need for remote monitoring of the lamps, while keeping the advantageous features of lower power consumption and longer life. The invention also provides a control circuit for enabling/disabling the power supply to LED lamps in relation to the level of the line voltage. The advantage of this embodiment is to avoid unwanted functioning of the LED lamp caused by interference from surrounding electrical cables.
Abstract:
LED lamp circuitry that emulates an incandescent lamp's behaviour upon remote verification of the LED lamp. The invention presents a fuse blow-out circuit and a cold filament detection circuit permitting the use of LED lamps in applications, such as railway signal light applications, where there is a need for remote monitoring of the lamps, while keeping the advantageous features of lower power consumption and longer life. The invention also provides a control circuit for enabling/disabling the power supply to LED lamps in relation to the level of the line voltage. The advantage of this embodiment is to avoid unwanted functioning of the LED lamp caused by interference from surrounding electrical cables.
Abstract:
A light emitting diode signal with reduced susceptibility to the “sun phantom” effect. A single printed circuit board populated with both the power supply circuitry and the light emitting diodes is located at an increased distance from the front cover which is angled to direct extraneous light away from the viewers position. A snap together housing reduces overall cost and assembly time. Light from the light emitting diodes distributed across the single printed circuit board to project an overlapping light pattern is collimated by a multiple collimating zone optical element which creates a uniform display aspect without discernable individual points of light.