Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices. More specifically, a wearable pod and/or device and processes to form the same facilitate implementation of a touch-sensitive interface in association with a predominately opaque surface. According to an embodiment, formation of a wearable pod includes detecting a capacitance value at a pod cover portion, determining a mode of operation based on a capacitance value, receiving subsets of sensor data, and selecting a subset of sensor data based on a mode of operation. The method can include determining values of at least one physiological signal and identifying a subset of light sources to emit light through an arrangement of micro-perforations constituting symbols indicative of the values of the physiological signal.
Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices. More specifically, a wearable pod and/or device and processes to form the same facilitate implementation of a touch-sensitive interface in association with a predominately opaque surface. According to an embodiment, a wearable pod includes a first pod cover, a cradle including attachment points, and a touch-sensitive detector disposed in the cradle and configured to detect a change in capacitance to a range of capacitance values. Further, the wearable pod may include a second pod cover and an isolation belt to electrically isolate at least a portion of a pod cover from the other pod cover.
Abstract:
Device-based activity classification using predictive feature analysis is described, including receiving a signal from a sensor configured to measure a heart rate coupled to a device, the sensor being configured to sense the signal over a time period, evaluating the signal to generate data associated with the heart rate, the data being further evaluated to select a classifier, invoking the classifier, the classifier being configured to evaluate the data to identify a predictive feature, the predictive feature invoking an application configured to determine a state using a feature interpreter, the application also being configured to evaluate other data from another signal, the signal being configured to detect a respiration rate, and processing the data and the other data using the application and the feature interpreter to generate information associated with sleep, the information being configured to display on an interface associated with the device.
Abstract:
A strap band including a flexible wire bus having electrodes and wires coupled with the electrodes is described. The strap band may be coupled with a device that includes circuitry configured to drive signals on some of the electrodes and receive signals from pickup electrodes. Driven electrodes are coupled with drive signals at different frequencies that may be varied to increase or decrease signal penetration depth to sense different body structures positioned at different depths in a body portion be sensed. Different frequencies for different types of measurements may be selected to optimize sensing different biometric parameters, such as bio-impedance, galvanic skin response, hear rate, respiration, heart rate variability, hydration, inflammation, stress, and arousal in sympathetic nervous system at different depths (e.g., layers or strata) in the body portion, for example. A first set of driven/pickup electrodes may sense different biometric parameters than a second set of driven/pickup electrodes.
Abstract:
Embodiments relate generally to electrical/electronic hardware, computer software, wired and wireless network communications, portable, wearable, and stationary media devices. Media devices may include a plurality of RF transceivers, an audio system, and a proximity detection system. The RF transceivers and/or audio system may be used to wirelessly communicate between media devices and allow configuration and other data to be wirelessly transmitted from one media device to another media device. The proximity detection system may be configured to detect a presence of a user or multiple users and upon detecting presence, take some action defined by a user preference and/or environmental conditions around the media device. One or more user devices in proximity of the media device post detection may wirelessly communicate with the media device and the media device may orchestrate handling of content from those devices or from a wirelessly accessible location such as the Cloud or Internet.
Abstract:
The various embodiments relate generally to systems, devices, apparatuses, and methods for providing audio streams to multiple listeners, and more specifically, to a system, a device, and a method for providing independent listener-specific audio streams to multiple listeners using a common audio source, such as a set of loudspeakers, and, optionally, a shared audio stream. In some embodiments, a method includes identifying a first audio stream for reception at a first region to be canceled at a second region, and generating a cancellation signal that is projected in another audio stream destined for the second region. The cancellation signal and the first audio steam are combined at the second region. Further, a compensation signal to reduce the cancellation signal at the first region can be generated.
Abstract:
Techniques associated with intelligent device connection for wireless media in an ad hoc acoustic network are described, including receiving a radio signal from an outside media device, determining whether the radio signal includes identifying information, evaluating the radio signal to calculate location data associated with a location of the outside media device, determining whether the location of the outside media device is within a threshold proximity of a primary media device, sending request to the outside media device, the request comprising an instruction to the outside media device to provide an acoustic output, receiving response data from the outside media device, capturing an acoustic signal using an acoustic sensor, determining the acoustic signal to be associated with the acoustic output from the outside media device, and generating acoustic network data using the acoustic signal, the acoustic network data identifying the outside media device as being part of the acoustic network.
Abstract:
A system, apparatus, or method for enabling an application developer to access the events, data and functionality of a device, such as a mobile phone, without being limited by the API provided by the device manufacturer. In some embodiments, the present invention utilizes a transparent gateway as a proxy that is inserted into the device stack to enable an application developer to access features and functions of the device beyond those exposed by the manufacturer provided API. For example, the transparent gateway may be inserted into the wireless stack of a mobile phone, in between the Bluetooth stack and the device's API. The transparent gateway may be installed in the mobile phone via an over the air provisioning or another suitable method.
Abstract:
Various embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and audio and speaker systems. More specifically, disclosed are an apparatus and a method for processing signals for optimizing audio, such as 3D audio, by adjusting the filtering for cross-talk cancellation based on listener position and/or orientation. In one embodiment, an apparatus is configured to include a plurality of transducers, a memory, and a processor configured to execute instructions to determine a physical characteristic of a listener relative to the origination of the multiple channels of audio, to cancel crosstalk in a spatial region coincident with the listener at a first location, to detect a change in the physical characteristic of the listener, and to adjust the cancellation of crosstalk responsive to detecting the change in the physical characteristic to establish another spatial region at a second location.