Abstract:
A method and device for calibrating a power model for a multi-state device. The device includes a processor and a computer readable medium containing instructions to instruct the processor to perform the method. The method includes receiving a device state log comprising a time-based representation of multi-state device states for a first period of time and a power trace comprising a time-based representation of power consumed by the multi-state device for the first period of time; eroding the device state log to reduce potential noise present at state transitions within the device state log, thereby producing an eroded device state log; determining energy consumption for each state transition in the eroded power state log; creating an updated power model for the multi-state device based upon the eroded power state log; and storing the updated power model in a non-transitory computer readable medium operably connected to the multi-state device.
Abstract:
A system for tracking the location of an electronic device includes an electronic device and a wireless location tag. The wireless location tag includes a microcontroller unit, and a modular connector interface configured to be communicatively coupled to a port of the electronic device. The wireless location tag is configured to establish an Internet connection to one or more backend electronic devices in response to detecting that the wireless location tag has been communicatively coupled to the port of the electronic device, obtain identifying information that is associated with the electronic device, and identify tag identifying information associated with the wireless location tag. The wireless location tag is also configured to send one or more instructions to the one or more backend electronic devices via the Internet connection, and send one or more ping messages to the one or more backend electronic devices.
Abstract:
The disclosure relates to an authentication approach to grant access to a secure service on an electronic device. The authentication approach includes receiving, via an electronic device, a request to access the secure service. The authentication approach includes determining whether the electronic device is positioned at a location that corresponds to a virtual authentication lock. The authentication approach includes displaying, in response to determining the device is positioned at the location that corresponds to the virtual authentication lock, the virtual authentication lock on a display of the electronic device. The authentication approach includes receiving one or more interactions with the virtual authentication lock. The authentication approach includes determining whether the one or more interactions correspond to one or more authentication interactions related to the virtual authentication lock and granting, in response to the one or more interactions corresponding to the one or more authentication interactions, access to the secure service.
Abstract:
The disclosure relates to an authentication approach to grant access to a secure service on an electronic device. The authentication approach includes receiving, via an electronic device, a request to access the secure service. The authentication approach includes determining whether the electronic device is positioned at a location that corresponds to a virtual authentication lock. The authentication approach includes displaying, in response to determining the device is positioned at the location that corresponds to the virtual authentication lock, the virtual authentication lock on a display of the electronic device. The authentication approach includes receiving one or more interactions with the virtual authentication lock. The authentication approach includes determining whether the one or more interactions correspond to one or more authentication interactions related to the virtual authentication lock. The authentication approach includes granting, in response to the one or more interactions corresponding to the one or more authentication interactions, access to the secure service.
Abstract:
A system for tracking the location of an electronic device includes an electronic device and a wireless location tag. The wireless location tag includes a microcontroller unit, and a modular connector interface configured to be communicatively coupled to a port of the electronic device. The wireless location tag is configured to establish an Internet connection to one or more backend electronic devices in response to detecting that the wireless location tag has been communicatively coupled to the port of the electronic device, obtain identifying information that is associated with the electronic device, and identify tag identifying information associated with the wireless location tag. The wireless location tag is also configured to send one or more instructions to the one or more backend electronic devices via the Internet connection, and send one or more ping messages to the one or more backend electronic devices.
Abstract:
A system of determining a distance between a mobile electronic device and an obstacle in an environment includes an electronic device, and a computer-readable storage medium. The computer-readable storage medium includes one or more programming instructions that, when executed, cause the electronic device to obtain from a camera of a mobile electronic device one or more images of one or more obstacles in a surrounding environment, and apply a convolution neural network to one or more of the obtained images to generate a one-dimensional array of depth perception estimates. The array includes one or more angle-distance pairs. an angle value of each angle-distance pair represents an angle of one or more of the obstacles relative to the camera. A distance value of each angle-distance pairs represents an estimated distance between the camera and one or more of the obstacles at the corresponding angle of the angle-distance pair.
Abstract:
A system, method and device for automated association of a device and a power meter. For example, the method includes determining a power profile for a power meter, determining device-specific power information for each of a plurality of devices, comparing the device-specific power information for each of the plurality of devices against the power profile for the power meter, determining, based upon the comparing, which of the plurality of devices is associated with the power meter, and recording the power meter and its associated device in a network management record. The techniques may be extended to include associating multiple multifunction print devices to one of a plurality of power meters based upon power log and job arrival information for the print devices as compared to power profile information from the power meters, thereby providing for automated associated of the devices and the power meters without unnecessary human interaction.
Abstract:
A system of tracking a location of a print device in an environment. For each of one or more users of a print device during a time period, the system identifies an event that is initiated at the print device over a network, and determines whether the used is registered with the location tracking system. In response to determining that the user is registered with the location tracking system, the system determines a location of the user, and stores the one or more location coordinates in a data store such that they are associated with the print device. The system estimates a location of the print device based on the location coordinates, and provides the location of the print device to an asset management system.
Abstract:
A device and method for estimating power consumption at a printing device. The device includes a processor and memory containing a set of instructions, the instructions configured to cause the device to perform the method. The method includes polling the printing device at a plurality of intervals over a first period of time and receiving a polling for at each of the plurality of intervals. The method further includes determining a page count difference between each poll and determining a timer count between each poll. An estimated energy consumption for the printing device is determined based upon the page count difference for each of the intervals and the timer count for each of the intervals. A total estimated energy is determined for the first period of time based upon the estimated energy consumption of the printing device for each of the intervals.
Abstract:
A system for tracking the location of an electronic device includes an electronic device and a wireless location tag. The wireless location tag includes a microcontroller unit, and a modular connector interface configured to be communicatively coupled to a port of the electronic device. The wireless location tag is configured to establish an Internet connection to one or more backend electronic devices in response to detecting that the wireless location tag has been communicatively coupled to the port of the electronic device, obtain identifying information that is associated with the electronic device, and identify tag identifying information associated with the wireless location tag. The wireless location tag is also configured to send one or more instructions to the one or more backend electronic devices via the Internet connection, and send one or more ping messages to the one or more backend electronic devices.