Abstract:
The present disclosure relates generally to a sliding seal between two components. The sliding seal includes a first seal section and an adjacent second seal section, each including a base and two extending legs defining respective first and second ends of the seal. At least the first seal section includes a first plurality of slots extending from the first end to the base and a second plurality of slots extending from the second end to the base.
Abstract:
The present disclosure relates generally to a seal between two components. The seal includes a first substantially frustoconical seal section including a first seal section radially outer end and a first seal section radially inner end. The seal also includes a second substantially frustoconical seal section including a second seal section radially outer end and a second seal section radially inner end, wherein the second seal section radially inner end is supported by the first seal section radially inner end to create a hinge joint allowing an angle defined between the first and second seal sections to change.
Abstract:
The present disclosure relates generally to a seal between two components. The seal includes a plurality of seal sections including convolutions therein that are inter-engaged with one another to form flexible and resilient seals.
Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a flexible seal that is attached to the first component. The flexible seal at least partially seals a gap between the first component and the second component. The flexible seal includes a mount and a finger seal that sealingly engages the second component. The mount includes a boss that sealingly engages the first component.
Abstract:
A dual-ended brush seal assembly that may be for turbine engine includes a first structure having a first surface and a second structure having a second surface. A brush seal of the assembly includes a bent bristle pack having a first end in sealing contact with the first surface and an opposite second end in sealing contact with the second surface. The first and second ends project in respective first and second directions that generally traverse one-another.
Abstract:
An active clearance control system of a gas turbine engine includes a multiple of blade outer air seal assemblies and a multiple of rotary ramps. Each of the multiple of rotary ramps is associated with one of the multiple of blade outer air seal assemblies. A method of active blade tip clearance control for a gas turbine engine is provided. The method includes rotating a multiple of rotary ramps to control a continuously adjustable radial position for each of a respective multiple of blade outer air seal assemblies.
Abstract:
A dual-ended brush seal assembly that may be for turbine engine includes a first structure having a first surface and a second structure having a second surface. A brush seal of the assembly includes a bent bristle pack having a first end in sealing contact with the first surface and an opposite second end in sealing contact with the second surface. The first and second ends project in respective first and second directions that generally traverse one-another.
Abstract:
The present disclosure relates generally to a sliding seal between two components. The sliding seal includes a first seal section and an uncoupled second seal section which allows the first and second seal sections to move relative to one another during relative movement between the two components. One or more spring tabs extend from the first seal section and/or the second seal section, are disposed between the first and second seal sections, and bias the first and second seal sections away from one another.
Abstract:
The present disclosure relates generally to a sliding seal between two components. The sliding seal includes a first seal section, a second seal section, and (in some embodiments) a third seal section. Two or three of the seal sections are uncoupled, which allows the uncoupled seal sections to move relative to one another during relative movement between the two components. One or more spring tabs extend from the second seal section and bias the first and third (or in some embodiments, the first and second) seal sections away from one another.