Abstract:
One aspect of the invention provides a composite refrigeration line set including: at least one selected from the group consisting of: a suction line and a return line. One or more of the suction line and the return line are a composite refrigeration line set tube including: an inner plastic tube; a first adhesive layer positioned about the inner plastic tube; an aluminum layer positioned about the first adhesive layer and coupled to the inner plastic tube via the first adhesive layer; a second adhesive layer positioned about the aluminum layer; and an outer plastic layer positioned about the aluminum layer coupled to the aluminum layer via the second adhesive layer. The inner plastic tube is polyethylene-fiberglass composite. The outer plastic tube is polyethylene-fiberglass composite. The aluminum layer includes an alloy selected from the group consisting of AL 3004-O, AL 3005-O, and AL 3555-O.
Abstract:
One aspect of the invention provides a system including: a length of energy-dissipative tubing; a first sealing device coupled to a first end of the length of energy-dissipative tubing; and a second sealing device coupled to a second end of the length of energy-dissipative tubing. Exposure to one or more selected from the group consisting of: fault currents or lightning strikes at an exposure point along the length of energy-dissipative tubing will produce arcs at the exposure point and at least one of the first end and the second end.
Abstract:
One aspect of the invention provides a composite refrigeration line set including at least one selected from the group consisting of: a suction line and a return line, characterized in that one or more of the suction line and the return line are a composite refrigeration line set tube include: an inner plastic tube; a first adhesive layer positioned about the inner plastic tube; an aluminum layer positioned about the first adhesive layer and coupled to the inner plastic tube via the first adhesive layer; a second adhesive layer positioned about the aluminum layer; and an outer plastic layer positioned about the aluminum layer coupled to the aluminum layer via the second adhesive layer. The inner plastic tube is polyethylene of raised temperature. The outer plastic tube is polyethylene of raised temperature. The aluminum layer comprises AL 3004-O.
Abstract:
One aspect of the invention provides a composite refrigeration line set including at least one selected from the group consisting of: a suction line and a return line, characterized in that one or more of the suction line and the return line are a composite refrigeration line set tube include: an inner plastic tube; a first adhesive layer positioned about the inner plastic tube; an aluminum layer positioned about the first adhesive layer and coupled to the inner plastic tube via the first adhesive layer; a second adhesive layer positioned about the aluminum layer; and an outer plastic layer positioned about the aluminum layer coupled to the aluminum layer via the second adhesive layer. The inner plastic tube is polyethylene of raised temperature. The outer plastic tube is polyethylene of raised temperature. The aluminum layer comprises AL 3005-O.
Abstract:
One aspect of the invention provides a composite refrigeration line set including at least one selected from the group consisting of: a suction line and a return line, characterized in that one or more of the suction line and the return line are a composite refrigeration line set tube include: an inner plastic tube; a first adhesive layer positioned about the inner plastic tube; an aluminum layer positioned about the first adhesive layer and coupled to the inner plastic tube via the first adhesive layer; a second adhesive layer positioned about the aluminum layer; and an outer plastic layer positioned about the aluminum layer coupled to the aluminum layer via the second adhesive layer. The inner plastic tube is polyethylene of raised temperature. The outer plastic tube is polyethylene of raised temperature. The aluminum layer comprises AL 3004-O.
Abstract:
One aspect of the invention provides a method including: obtaining a kit as described herein; advancing a cut end of the length of CSST over the nipple of the fitting; placing the crimping jaw over the cut end of the length of CSST and the fitting such that: the one or more alignment bosses are seated within the one or more alignment grooves; the one or more crimping points are seated within one or more of the corrugation valleys; and the one or more crimping points and the corrugation valleys are radially over the one or more annular corrugation grooves; and applying force to the crimping jaws, thereby forming a gas-tight seal between the cut end of the CSST and the fitting.
Abstract:
One aspect of the invention provides a sealing device for connecting a length of corrugated tubing. The sealing device includes: a body member defining a sleeve portion; a nut adapted and configured for threaded engagement with the body member, the nut defining an internal shoulder; and a bushing. The bushing includes: an annular internal rib located on a proximal end, the annular internal rib adapted and configured to engage a corrugation valley of corrugated tubing; a medial external rib adapted and configured to be engaged by the internal shoulder of the nut and to advance the bushing within the sleeve portion of the body member; and a trailing hinged portion located on a distal end. The trailing hinged portion is adapted and configured for inward compression against the corrugated tubing received within the bushing as the nut is advanced over the trailing hinged portion.
Abstract:
One aspect of the invention provides a jacket-stripping tool including: a reference stop adapted and configured to contact an end of corrugated stainless steel tubing; and one or more cutting blades arranged substantially perpendicular to a central axis of the tool and adapted and configured to create one or more cuts through one or more external jacket layers of the corrugated stainless steel tubing. At least one of the one or more cutting blades is positioned relative to the reference stop such that the at least one of the one or more cutting blades is a multiple of a distance between adjacent corrugation valleys of the corrugated stainless steel tubing.
Abstract:
One aspect of the invention provides an energy dissipative tube including: a length of tubing; an inner resin layer surrounding an outer surface of said tubing, wherein said inner resin layer is substantially free of a fire retardant; a non-expanded metal foil adjacent to an outer surface of said inner resin layer; and an outer resin layer surrounding said metal foil and said inner resin layer, wherein said outer resin layer includes a fire retardant. Another aspect of the invention provides an energy dissipative tube include: a length of tubing; an inner resin layer surrounding an outer surface of said tubing, wherein said inner resin layer is static dissipative; a non-expanded metal foil adjacent to an outer surface of said inner resin layer; and an outer resin layer surrounding said metal foil and said inner resin layer, wherein said outer resin layer is conductive.
Abstract:
One aspect of the invention provides an energy dissipative tube including: a length of tubing; an inner resin layer surrounding an outer surface of said tubing, wherein said inner resin layer is substantially free of a fire retardant; a non-expanded metal foil adjacent to an outer surface of said inner resin layer; and an outer resin layer surrounding said metal foil and said inner resin layer, wherein said outer resin layer includes a fire retardant. Another aspect of the invention provides an energy dissipative tube include: a length of tubing; an inner resin layer surrounding an outer surface of said tubing, wherein said inner resin layer is static dissipative; a non-expanded metal foil adjacent to an outer surface of said inner resin layer; and an outer resin layer surrounding said metal foil and said inner resin layer, wherein said outer resin layer is conductive.