Abstract:
Detector data representative of an intensity of light that impinges on a detector after being emitted from a light source and passing through a gas over a path length can be analyzed using a first analysis method to obtain a first calculation of an analyte concentration in the volume of gas and a second analysis method to obtain a second calculation of the analyte concentration. The second calculation can be promoted as the analyte concentration upon determining that the analyte concentration is out of a first target range for the first analysis method.
Abstract:
A spectrometer includes a light source that emits a beam into a sample volume comprising an absorbing medium. Thereafter, at least one detector detects at least a portion of the beam emitted by the light source. It is later determined, based on the detected at least a portion of the beam and by a controller, that a position and/or an angle of the beam should be changed. The beam emitted by the light source is then actively steered by an actuation element under control of the controller. In addition, a concentration of the absorbing media can be quantified or otherwise calculated (using the controller or optionally a different processor that can be local or remote). The actuation element(s) can be coupled to one or more of the light source, a detector or detectors, and a reflector or reflectors intermediate the light source and the detector(s).
Abstract:
A frequency registration deviation is quantified for a field spectrum collected during analysis by a spectroscopic analysis system of a sample fluid when the spectroscopic analysis system has deviated from a standard calibration state. The field spectrum is corrected based on the frequency registration deviation using at least one spectral shift technique, and a concentration is calculated for at least one analyte represented by the field spectrum using the corrected field spectrum. Related systems, methods, and articles are described.
Abstract:
A spectrometer includes a light source configured to emit a beam along a beam path through a sample volume comprising an analyte. Also included is at least one detector positioned to detect at least a portion of the beam emitted by the light source, and at least one reflector positioned along the beam path intermediate the light source and the at least one detector having a surface roughness greater than a predefined level such as 20 Å RMS.
Abstract:
A frequency registration deviation is quantified for a field spectrum collected during analysis by a spectroscopic analysis system of a sample fluid when the spectroscopic analysis system has deviated from a standard calibration state. The field spectrum is corrected based on the frequency registration deviation using at least one spectral shift technique, and a concentration is calculated for at least one analyte represented by the field spectrum using the corrected field spectrum. Related systems, methods, and articles are described.
Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
Frequency registration deviations occurring during a scan of a frequency or wavelength range by a spectroscopic analysis system can be corrected using passive and/or active approaches. A passive approach can include determining and applying mathematical conversions to a recorded field spectrum. An active approach can include modifying one or more operating parameters of the spectroscopic analysis system to reduce frequency registration deviation.
Abstract:
A sample cell can be designed to minimize excess gas volume. Described features can be advantageous in reducing an amount of gas required to flow through the sample cell during spectroscopic measurements, and in reducing a time (e.g. a total volume of gas) required to flush the cell between sampling events. In some examples, contours of the inners surfaces of the sample cell that contact the contained gas can be shaped, dimensioned, etc. such that a maximum clearance distance is provided between the inner surfaces at one or more locations. Systems, methods, and articles, etc. are described.
Abstract:
A method for implementation by a laser spectrometer is provided. The method includes first scanning, by a control unit using a first set of laser spectrometer operating parameters, a first wavelength range by adjusting a wavelength of light of a beam emitted by a laser light source and passing through a sample gas. The first wavelength range encompasses a first spectral feature corresponding to a first constituent. The method also includes at least one second scanning, by the control unit using a second set of laser spectrometer operating parameters, a second wavelength range by adjusting the wavelength of light emitted from the laser light source and passing through the sample gas. The second wavelength range has a second spectral feature corresponding to at least one second constituent. The control unit also determines a first concentration of the first constituent and a second concentration of the at least one second constituent.
Abstract:
A first contact surface of a semiconductor laser chip can be formed to a target surface roughness selected to have a maximum peak to valley height that is substantially smaller than a barrier layer thickness. A barrier layer that includes a non-metallic, electrically-conducting compound and that has the barrier layer thickness can be applied to the first contact surface, and the semiconductor laser chip can be soldered to a carrier mounting along the first contact surface using a solder composition by heating the soldering composition to less than a threshold temperature at which dissolution of the barrier layer into the soldering composition occurs. Related systems, methods, articles of manufacture, and the like are also described.