Abstract:
A method for preparing an aluminum-zirconium-boron alloy and synchronously preparing a cryolite is provided. The method includes the following steps: Step A: placing aluminum in a reactor, heating the reactor to 700-850 degrees centigrade, and adding a mixture consisting of fluorozirconate and fluoborate in a molar ratio of x: y into the reactor; Step B: stirring the reactants for 4-6 hours and extracting the upper molten liquid to obtain a cryolite, wherein the lower substance is an aluminum-zirconium-boron alloy, and aluminum is added in an excess amount. The method provided herein for preparing an aluminum-zirconium-boron alloy which is mild in reaction condition, easy to control and simple in technical flow can prepare a high-quality product through a complete reaction, besides, the use of the synchronously prepared low molecular ratio cryolites (KF.AlF3 and NaF.AlF3) in the aluminum electrolysis industry can achieve a proper electrical conductivity.
Abstract:
The invention provides a preparation method for producing metal zirconium industrially and producing low-temperature aluminum electrolyte as byproduct, which comprises the following steps: A) aluminum and fluorozirconate are put in a closed reactor, inert gas is fed into the reactor after evacuation, the reactor is heated up to 780° C. to 1000° C. and then the mixture in the reactor is stirred rapidly; and B) after reaction continues for 4 to 6 hours, the liquid molten at the upper layer is sucked out to obtain low-temperature aluminum electrolyte, and the product at the lower layer is subjected to acid dipping or distillation to remove surface residue to obtain metal zirconium.
Abstract:
The disclosure provides a method for preparing an electrolyte and an electrolyte replenishment system during an electrolytic process. The method includes the following steps: Step A: placing aluminum in a reactor, vacuumizing the reactor and feeding an inert gas, heating the reactor to 700-850 degrees centigrade, and adding one or more of potassium fluozirconate, potassium fluoborate, sodium hexafluorozirconate and sodium fluoroborate; and Step B: stirring the reactants for 4-6 hours and extracting the upper molten liquid to obtain an electrolyte replenishment system during an aluminum electrolysis process. The disclosure has the following beneficial effects: when used in the aluminum electrolysis industry, the electrolyte system provided herein can be directly used as an aluminum electrolyte or a replenishment system in an electrolyte without changing existing electrolysis technology to significantly reduce an electrolysis temperature during an aluminum electrolysis process.
Abstract:
The disclosure provides an electrolyte supplement system in an aluminum electrolysis process, which includes low-molecular-ratio cryolite, wherein the low-molecular-ratio cryolite is selected from mKF.AlF3, nNaF.AlF3 or mixture thereof, where m=1˜1.5 and n=1˜1.5. When the electrolyte supplement system provided by the disclosure is applied to the aluminum electrolytic industry, electrolytic temperature can be reduced obviously in the aluminum electrolysis process without changing the existing electrolytic process; thus, power consumption is reduced, volatilization loss of fluoride is reduced and the comprehensive cost of production is reduced.
Abstract:
The present invention provides an alloy for magnesium and magnesium alloy grain refinement, and a preparation method thereof, the alloy as a grain refiner being an aluminum-zirconium-boron intermediate alloy comprising the following chemical compositions by weight percent: 5-20% of Zr, 0.5-4% of B, and the balance being Al. The invention can achieve the following technical effect: an intermediate alloy with strong nucleation capability and excellent capability of magnesium and magnesium alloy grain refinement is invented and its preparation method is provided. This kind of grain refiner can be applied to casting deformation plastic processing of magnesium and magnesium alloy profiles, with high degree of refinement, to promote the extensive industrial applications of magnesium.
Abstract:
A method for preparing zirconium boride and synchronously preparing a cryolite is provided which includes the following steps: Step A: placing aluminum in a reactor, heating the reactor to 700-850 degrees centigrade, and adding the mixture of fluorozirconate and fluoborate; and Step B: stirring the reactants for 4-6 hours and extracting the upper molten liquid to obtain a cryolite, wherein the lower substance is zirconium boride. The disclosure has the following beneficial effects: the new zirconium boride preparation method provided herein is simple in preparation flow and the device used, short in preparation period and high in reaction efficiency, the prepared zirconium boride with many contact angles has a large specific surface area and contains a controllable amount of aluminum.