Abstract:
A flat panel display having a mesh grid assembly which includes upper and lower spacers integral therein. The flat panel display includes a faceplate and a backplate provided opposing one another with a predetermined gap therebetween to define an exterior of the display. An illuminating assembly is provided in the display, the illuminating assembly realizing predetermined images. A mesh grid is provided between the backplate and the faceplate. A lower spacer is connected to a surface of the mesh grid opposing the backplate to be supported by the backplate. Upper spacers are connected to a surface of the mesh grid opposing the faceplate to be supported by the faceplate. The mesh grid, the lower spacer, and the upper spacers thereby integrally forming a single structural assembly.
Abstract:
An electron emission display includes first and second substrates facing each other, a plurality of driving electrodes formed on the first substrate, a plurality of electron emission regions controlled by the driving electrodes, a focusing electrode disposed on and insulated from the driving electrodes and provided with openings through which electron beams pass, a plurality of phosphor layers formed on a surface of the second substrate, an anode electrode formed on surfaces of the phosphor layers, and a plurality of spacers for maintaining a gap between the first and second substrates. Among the electron emission regions disposed in the opening adjacent to the spacer, one electron emission region, which is closest to the adjacent spacer, is spaced apart from an inner wall of the opening by a first distance that is different from a second distance from another electron emission region, which is farthest from the adjacent spacer, to the inner wall of the opening.
Abstract:
A light emission device including first and second substrates facing each other, electron emission elements on the first substrate, an anode electrode with a phosphor layer on the second substrate, and spacers between the first and second substrates. Each spacer includes a spacer body comprising a dielectric material, a first coating layer on a first region of the spacer body, the first region being adjacent to the first substrate, and a second coating layer on a second region of the spacer body, the second region being adjacent to the second substrate, wherein a maximum secondary electron emission coefficient of the first coating layer under an operation voltage condition applied to the first region is about 0.8 to about 1 and a maximum secondary electron emission coefficient of the second coating layer under an operation voltage condition applied to the first and second regions is about 3 to about 16.
Abstract:
An electron emission display includes a first substrate and a second substrate facing each other, a side member formed along the edges of the first substrate and the second substrate to form a vacuum envelope together with the first substrate and the second substrate, an electron emission unit provided on the first substrate, a light emission unit provided on the second substrate to emit visible light when impacted by electrons from the electron emission unit, and a thermal conduction member connecting the first substrate and the second substrate.
Abstract:
An electron emission display is provided to prevent electron beams around the spacers from being distorted and to prevent arc discharging due to the spacers. The electron emission display includes first and second substrates facing each other to form a vacuum vessel, an electron emission unit provided on the first substrate, a light emission unit provided on the second substrate, and a plurality of spacers disposed between the first and the second substrates. Each spacer has a spacer body with a surface roughness, a resistance layer placed on a lateral side of the spacer body, and a flattening layer covering the resistance layer. The flattening layer has a thickness larger than the thickness of the resistance layer and a surface roughness smaller than the surface roughness of the spacer body.
Abstract:
An electron emission display includes first and second substrates facing each other, a plurality of election emission regions provided on the first substrate, a black layer formed on a first surface of the second substrate between the phosphor layers, and an anode electrode coupled to the phosphor and black layers. The anode electrode has a light transmissivity ranging from about 3% to about 15%. A method of forming the anode electrode includes forming an interlayer on the phosphor and black layer, depositing a conductive material on the second substrate, and removing the interlayer through a firing process.
Abstract:
An electron emission display includes a first substrate and a second substrate facing each other, a side member formed along the edges of the first substrate and the second substrate to form a vacuum envelope together with the first substrate and the second substrate, an electron emission unit provided on the first substrate, a light emission unit provided on the second substrate to emit visible light when impacted by electrons from the electron emission unit, and a thermal conduction member connecting the first substrate and the second substrate.
Abstract:
An electron emission device includes a substrate, an anode electrode formed on the substrate, phosphor layers formed on the anode electrode, and resistance layers formed on the substrate and electrically connected to the anode electrode.
Abstract:
An electron emission display is provided to prevent electron beams around the spacers from being distorted and to prevent arc discharging due to the spacers. The electron emission display includes first and second substrates facing each other to form a vacuum vessel, an electron emission unit provided on the first substrate, a light emission unit provided on the second substrate, and a plurality of spacers disposed between the first and the second substrates. Each spacer has a spacer body with a surface roughness, a resistance layer placed on a lateral side of the spacer body, and a flattening layer covering the resistance layer. The flattening layer has a thickness larger than the thickness of the resistance layer and a surface roughness smaller than the surface roughness of the spacer body.
Abstract:
An electron emission display includes first and second substrates facing each other, a plurality of electron emission regions provided on the first substrate, a plurality of phosphor layers formed on a first surface of the second substrate, a black layer formed on the first surface of the second substrate between the phosphor layers, and an anode electrode coupled to the phosphor and black layers. The anode electrode has a light transmissivity ranging from about 3% to about 15%. A method of forming the anode electrode includes forming an interlayer on the phosphor and black layers, removing a portion of the interlayer corresponding to the black layer, depositing a conductive material on the second substrate, and removing the interlayer through a firing process.