Abstract:
An image forming apparatus includes an image forming mechanism, an image bearing member, a transfer member, a transfer member mount, and an image detector. The image forming mechanism forms a first image and a second image on a surface of the image bearing member. The transfer member is disposed facing the image bearing member and contactable thereagainst to form a transfer nip at which the first image is transferred from the image bearing member to a recording medium. The transfer member mount on which the transfer member is disposed accommodates multiple different sizes of transfer member. The image detector detects the second image on the surface of the image bearing member. The image forming apparatus includes a plurality of interchangeable transfer members, only one of which at any given time faces the image bearing member, and a transfer member switching device to switch between the plurality of transfer members.
Abstract:
A cleaning device is used in an image forming apparatus to remove residual attachments including toner and paper powders from a surface of a movable intermediate transfer element onto which toner images are transferred from an image carrier. The cleaning device includes a cleaning brush that contacts the surface of the intermediate transfer element to apply a bias having a predetermined polarity to the toner adhered onto the surface of the intermediate transfer element so as to make uniform a polarity of the toner. The cleaning device further includes a pressing member that contacts the surface of the intermediate transfer element with a predetermined pressure. The pressing member is disposed at a position upstream of the cleaning brush in a direction of movement of the intermediate transfer element.
Abstract:
An image forming apparatus of the present invention includes an intermediate image transfer belt passed over a plurality of support members and movable while carrying a toner image of preselected polarity transferred thereto. An electrode member contacts the inside surface of the belt and is applied with a preselected voltage for transferring the toner image from the belt to a recording medium. A contact member with high electric resistance contacts the belt at a position adjacent the electrode member and includes an insulating layer thereon.
Abstract:
A simple, low cost image forming apparatus for transferring a toner image from a photoconductive element, intermediate image transfer body or similar image carrier to a recording medium and an image transferring device therefor are disclosed. When a discharger for separating a paper or similar recording-medium from the image carrier is located on a path along which the surface of the image carrier moved away from an image transfer nip (in early moves for, e.g., layout reasons, the defective separation of the trailing edge of the paper is obviated which would scatter a toner image. The trailing edge of the paper is substantially prevented from jumping up and contacting a structural element included in the apparatus.
Abstract:
An image forming apparatus includes a transfer device to transfer an image on an image carrier to a transfer sheet. The transfer device includes a transfer roller and transfers an image on the image carrier to a transfer sheet conveyed into a transfer area between the transfer roller and the image carrier by applying a bias voltage to the transfer roller. The transfer device includes a device to apply a release agent for an alien substance to a surface of the transfer roller. Toner and an alien substance, such as paper dust, thereby hardly adheres to the release agent applied on the surface of the transfer roller. Even if toner and/or an alien substance are put on the release agent applied on the surface of the transfer roller, such toner and/or an alien substance are easily removed by a cleaning device. Thus, lowering of an image quality due to insufficient cleaning of the transfer roller is avoided.
Abstract:
An image reading system for optically reading an original includes a convergent type light-emitting diode array as a light source, a white level reference and an image sensor disposed opposite to the white level reference. The light emitted from the LED array has a light intensity distribution which reduces in level in a transverse direction from an irradiation axis. The LED array is preferably so disposed with its irradiation axis passing a mid-point between the white level reference and an intersection point between an original surface travelling line and a straight line extending between the white level reference and the image sensor.
Abstract:
A color image reader for decomposing two-color images into independent color components includes a color-separating mirror which is provided with a multi-layer interference filter on one of opposite major surfaces thereof. The other surface of the mirror serves as a reflection surface. Image light incident to the mirror is separated into two different color components which are then redirected to propagate in the same direction. The two color components respectively are focused to different line image sensors.