Abstract:
Provided is a system for measuring biological signals of a user, which includes a sensor module configured to acquire ballistocardiogram (BCG) signals of a user via a present channel, where the present channel is at least one channel of the sensor module, a decomposition module configured to decompose the BCG signals to decomposed signals, a reconstruction module configured to reconstruct at least a portion of the decomposed signals to reconstructed signals, a processing module configured to process the reconstructed signals to at least one of a heart rate, respiration rate, phases of respiration, and blood pressure, and a display module configured to display at least one output corresponding to the at least one of the heart rate, the respiration rate, phases of respiration, and the blood pressure on a display device.
Abstract:
Provided is a system for measuring biological signals of a user, which includes a sensor module configured to acquire ballistocardiogram (BCG) signals of a user via a present channel, where the present channel is at least one channel of the sensor module, a decomposition module configured to decompose the BCG signals to decomposed signals, a reconstruction module configured to reconstruct at least a portion of the decomposed signals to reconstructed signals, a processing module configured to process the reconstructed signals to at least one of a heart rate, respiration rate, phases of respiration, and blood pressure, and a display module configured to display at least one output corresponding to the at least one of the heart rate, the respiration rate, phases of respiration, and the blood pressure on a display device.
Abstract:
As a non-limiting example, various aspects of this disclosure provide embodiments of real-time heartbeat events detection using low-power, low-noise motion sensor.
Abstract:
A computer-implemented method for estimating biophysiological rates using the Hilbert transform includes receiving a quasiperiodic data stream from a biophysiological sensor, and removing at least a portion of an offset from the quasiperiodic data stream to provide a smoothed data stream by filtering the quasiperiodic data stream through a bandpass filter and phase compensating the filtered quasiperiodic data stream. The method also includes transforming the smoothed data stream into an analytic data stream using a Hilbert transform approximation and calculating the time derivative of the phase angle of the analytic data stream, where the time derivative is a frequency of the quasiperiodic data stream. The method further includes providing an output data stream derived from the frequency.
Abstract:
Provided is an electronic device to monitor a user's biological measurements, where a sensor is configured to acquire a first signal from a user, and a diagnostic processor is configured to pre-process the first signal to generate a second signal, segment the second signal to form signal segments, determine at least one event location for each of the signal segments, match adjacent signal segments for feature alignment, and provide a third signal using results of the feature alignment.
Abstract:
Provided is an electronic device to monitor a user's biological measurements, where a sensor is configured to acquire a raw signal from a user, and the electronic device determines a snoring signal from the raw signal by appropriately processing the raw signal.
Abstract:
Provided is an electronic device to monitor a user's biological measurements, where a sensor is configured to acquire a first signal from a user, and a diagnostic processor is configured to pre-process the first signal to generate a second signal, segment the second signal to form signal segments, determine at least one event location for each of the signal segments, match adjacent signal segments for feature alignment, and provide a third signal using results of the feature alignment.
Abstract:
Provided is a method and system for helping a user reach a health goal. Various embodiments of the disclosure disclose receiving various data that relate to the user and comparing the received data to monitored user health data to provide recommendations on steps to take to achieve the health goal. The various embodiments also determine when the user has achieved the user's desired health goal.
Abstract:
A computer-implemented method for estimating biophysiological rates using the Hilbert transform includes receiving a quasiperiodic data stream from a biophysiological sensor, and removing at least a portion of an offset from the quasiperiodic data stream to provide a smoothed data stream by filtering the quasiperiodic data stream through a bandpass filter and phase compensating the filtered quasiperiodic data stream. The method also includes transforming the smoothed data stream into an analytic data stream using a Hilbert transform approximation and calculating the time derivative of the phase angle of the analytic data stream, where the time derivative is a frequency of the quasiperiodic data stream. The method further includes providing an output data stream derived from the frequency.