Abstract:
A method of grinding a semiconductor nanocrystal-polymer composite, the method including obtaining a semiconductor nanocrystal-polymer composite including a semiconductor nanocrystal and a first polymer, contacting the semiconductor nanocrystal-polymer composite with an inert organic solvent; and grinding the semiconductor nanocrystal-polymer composite in the presence of the inert organic solvent to grind the semiconductor nanocrystal-polymer composite.
Abstract:
A quantum dot including a core and a shell disposed on the core wherein one of the core and the shell includes a first semiconductor nanocrystal including zinc and sulfur and the other of the core and the shell includes a second semiconductor nanocrystal having a different composition from the first semiconductor nanocrystal, the first semiconductor nanocrystal further includes a metal and a halogen configured to act as a Lewis acid in a halide form, an amount of the metal is greater than or equal to about 10 mole percent (mol %) based on a total number of moles of sulfur, and an amount of the halogen is greater than or equal to about 10 mol % based on a total number of moles of sulfur, a method of producing the same, and a composite and an electronic device including the same.
Abstract:
A nanocrystal particle including at least one semiconductor material and at least one halogen element, the nanocrystal particle including: a core comprising a first semiconductor nanocrystal; and a shell surrounding the core and comprising a crystalline or amorphous material, wherein the halogen element is present as being doped therein or as a metal halide
Abstract:
A quantum dot including a core and a shell disposed on the core wherein one of the core and the shell includes a first semiconductor nanocrystal including zinc and sulfur and the other of the core and the shell includes a second semiconductor nanocrystal having a different composition from the first semiconductor nanocrystal, the first semiconductor nanocrystal further includes a metal and a halogen configured to act as a Lewis acid in a halide form, an amount of the metal is greater than or equal to about 10 mole percent (mol %) based on a total number of moles of sulfur, and an amount of the halogen is greater than or equal to about 10 mol % based on a total number of moles of sulfur, a method of producing the same, and a composite and an electronic device including the same.
Abstract:
A cadmium-free, core shell quantum dot, a quantum dot polymer composite, and electronic devices including the quantum dot polymer composite. The core shell quantum dot has an extinction coefficient per gram of greater than or equal to 0.3, an ultraviolet-visible absorption spectrum curve that has a positive differential coefficient value at 450 nm, wherein the core shell quantum dot includes a semiconductor nanocrystal core including indium and phosphorus, and optionally zinc, and a semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the shell including zinc, selenium, and sulfur, wherein the core shell quantum dot has a quantum efficiency of greater than or equal to about 80%, and is configured to emit green light upon excitation.
Abstract:
An electronic device and a production method thereof, wherein the electronic device includes: a semiconductor layer comprising a plurality of quantum dots; and a first electrode and a second electrode spaced apart from each other; wherein the plurality of quantum dots do not comprise cadmium, lead, or mercury; wherein the plurality of quantum dots comprise indium and optionally gallium; a Group VA element, wherein the Group VA element comprises antimony, arsenic, or a combination thereof, and a molar ratio of the Group VA element with respect to the Group IIIA metal (e.g., indium) is less than or equal to about 1.2:1, and wherein the semiconductor layer may be disposed between the first electrode and the second electrode.
Abstract:
A quantum dot, a quantum dot composite including the quantum dot, a composition for preparing the quantum dot composite, a display panel including the quantum dot composite, and an electronic apparatus including the display panel. The quantum dot includes a semiconductor nanocrystal core including indium and phosphorus, the semiconductor nanocrystal core having an emission peak wavelength from about 600 nm to about 650 nm, or an emission peak wavelength from about 500 nm to about 550 nm, and an area of a peak from about 400° C. to about 500° C. is 0.17 times to 0.5 times relative to an area of a peak from about 200° C. to about 300° C. in a thermogravimetric analysis (TGA) graph as determined with a differential scanning calorimeter (DSC).
Abstract:
Quantum dots and a composite and a display device including the quantum dots. The quantum dots comprise a semiconductor nanocrystal core comprising indium and phosphorous, and optionally zinc, a semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the first semiconductor nanocrystal shell comprising zinc, selenium, and sulfur, wherein the quantum dots are configured to exhibit a maximum photoluminescence peak in a green light wavelength region, and in an ultraviolet-visible (UV-Vis) absorption spectrum of the quantum dots, a ratio A450/Afirst, of an absorption value at 450 nm to an absorption value at a first excitation peak is greater than or equal to about 0.7, and a valley depth (VD) defined by the following equation is greater than or equal to about 0.4: (Absfirst−Absvalley)/Absfirst=VD wherein, Absfirst is an absorption value at the first absorption peak wavelength and Absvalley is an absorption value at a lowest point of the valley adjacent to the first absorption peak, and wherein the maximum photoluminescence peak of the quantum dots has a full width at half maximum of less than or equal to 40 nanometers.
Abstract:
A display panel may include a light emitting panel, and a color conversion panel. The light emitting panel is configured to emit incident light including a first light and a second light, a luminescent peak wavelength of the first light may be greater than or equal to about 450 nm and less than or equal to about 480 nm and a luminescent peak wavelength of the second light may be greater than or equal to about 500 nm and less than or equal to about 580 nm. The color conversion panel includes a color conversion layer including a conversion region, and optionally, a partition wall defining each region of the color conversion panel. The color conversion region includes a first region corresponding to a red pixel, and the first region include a first composite including a matrix and a plurality of luminescent nanostructures dispersed in the matrix, and in the UV-Vis absorption spectrum, an absorbance ratio at a wavelength of 520 nm with respect to a wavelength of 350 nm may be greater than or equal to about 0.04:1.
Abstract:
A color conversion panel that includes a color conversion layer including two or more color conversion regions, and optionally, a partition wall defining the regions of the color conversion layer, and a display device including the color conversion panel. The color conversion region includes a first region corresponding to a first pixel, and the first region includes a first composite including a matrix and a plurality of luminescent nanostructures dispersed in the matrix. The luminescent nanostructures include a first semiconductor nanocrystal including a Group III-V compound and a second semiconductor nanocrystal including a zinc chalcogenide. The Group III-V compound includes indium, phosphorus, and optionally, zinc or gallium, or zinc and gallium, and the zinc chalcogenide includes zinc, selenium, and sulfur. The luminescent nanostructures further include aluminum and chlorine, and a mole ratio of aluminum to sulfur (Al:S) is less than about 0.15:1, a mole ratio of chlorine to sulfur (Cl:S) is less than about 0.1:1, and a mole ratio of sulfur to selenium (S:Se) is greater than or equal to about 2:1. The luminescent nanostructures don not include cadmium.