Abstract:
A light sensing system includes a plurality of light-emitting devices arranged to have a first optical axis and a plurality of light-receiving devices arranged to have a second optical axis, the second optical axis being parallel with the first optical axis. The plurality of light-emitting devices and the plurality of light-receiving devices are formed to have a monolithically integrated structure, and the first optical axis and the second optical axis are substantially coaxial to each other, thus improving the efficiency of light reception.
Abstract:
A light sensing system includes a plurality of light-emitting devices arranged to have a first optical axis and a plurality of light-receiving devices arranged to have a second optical axis, the second optical axis being parallel with the first optical axis. The plurality of light-emitting devices and the plurality of light-receiving devices are formed to have a monolithically integrated structure, and the first optical axis and the second optical axis are substantially coaxial to each other, thus improving the efficiency of light reception.
Abstract:
Provided is an apparatus and method of recognizing a movement of a subject. The apparatus includes a light source configured to emit light to the subject and an image sensor configured to receive light reflected from the subject. The apparatus includes a processor configured to detect a pixel that is receiving the reflected light, the pixel being included in a pixel array of the image sensor. The processor is configured to track the movement of the subject based on a change in a position of the detected pixel.
Abstract:
A lidar device includes a light source configured to emit a laser pulse to an object, a light receiver configured to receive the laser pulse reflected by the object, a first periodic wave generator configured to generate a first periodic wave when the light source emits the laser pulse and generate a second periodic wave when the light source receives the laser pulse, and a first comparator configured to compare a phase of the first periodic wave and a phase of the second periodic wave to each other. The lidar device calculates a distance between the lidar device and the object based on a phase difference determined by the first comparator.
Abstract:
A three-dimensional (3D) image sensor module including: an oscillator configured to output a distortion-compensated oscillation frequency as a driving voltage of a sine wave biased with a bias voltage; an optical shutter configured to vary transmittance of reflective light reflected from a subject, according to the driving voltage, and to modulate the reflective light into at least two optical modulation signals having different phases; and an image generator configured to generate image data about the subject, the image data including depth information that is calculated based on a difference between the phases of the at least two optical modulation signals
Abstract:
Provided is an apparatus and method of recognizing a movement of a subject. The apparatus includes a light source configured to emit light to the subject and an image sensor configured to receive light reflected from the subject. The apparatus includes a processor configured to detect a pixel that is receiving the reflected light, the pixel being included in a pixel array of the image sensor. The processor is configured to track the movement of the subject based on a change in a position of the detected pixel.
Abstract:
Provided is a light detection and ranging (LiDAR) system including: a light source; a beam steering device configured to steer light emitted from the light source toward an object; a light detector configured to detect light reflected from the object; and a processor. The beam steering device may include an optical phased array, including a plurality of channels, and a signal input unit which applies a plurality of driving signals to the plurality of channels. The processor is configured to perform an optimization operation including analyzing the light detected by the light detector, calculating at least one correction value, and controlling the plurality of driving signals according to the at least one correction value, in order to correct an error of the beam steering device.
Abstract:
Provided are a distance measuring device and a distance measuring method of measuring a distance to an object by amplifying an electrical signal using a gain that varies the level of the electrical signal and detecting a peak of the amplified electrical signal.
Abstract:
Provided are a method of identifying light reflected from an object, from among light incident from a plurality of different directions, based on information about an irradiation angle of light irradiated by a light source, and a light detection and ranging (LiDAR) apparatus therefor.
Abstract:
A method of acquiring distance information is provided. The method includes determining a projecting order of different projected lights to be sequentially projected onto an object, based on a position of the object and/or an external input, sequentially projecting the different projected lights onto the object in the determined projecting order, obtaining modulated reflected lights by modulating the reflected lights reflected by the object; and acquiring information about a distance between the device and the object based on the modulated reflected lights.