Abstract:
An LCD panel, comprises substrates facing each other, a liquid crystal layer disposed between the substrates and liquid crystal alignment layers, each sandwiched between the liquid crystal layer and a respective one of the substrates, wherein the liquid crystal alignment layers comprises hydrocarbon derivative having perfluorocarbon group.
Abstract:
A curved display device includes a bent first substrate and a bent second substrate spaced apart and facing each other, a sealant positioned at edges of the first substrate and the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate and contained by the sealant, wherein the first substrate and the second substrate are bent to have almost the same curvature radius, and a modulus of elasticity of the sealant, at least when bending of the bent first and second substrates occurs, is about 1 MPa to about 100 MPa and more specifically about 1 MPa to about 50 MPa so that the sealant can be easily shear deformed during the bending process.
Abstract:
A light emitting display device comprises a substrate, a first pixel electrode disposed on the substrate, a pixel defining film disposed on the first pixel electrode and having a first opening at least partially exposing the first pixel electrode, a first organic light emitting layer disposed on the pixel defining film and overlapping with the first opening of the pixel defining film, and a black matrix disposed on the first organic light emitting layer and having a first opening overlapping with the first organic light emitting layer. Light having passed through the first opening of the black matrix is one of red light, green light, and blue light. The first opening of the black matrix may have a shape with a curved portion.
Abstract:
A color transformation substrate comprises: a base portion having first and second light-blocking areas and first to third light-transmitting areas, where the light-transmitting areas are successively positioned along a first direction; first to third color filters positioned in the first to third light-transmitting areas, respectively; a light-blocking member positioned in the first light-blocking area, and including part contacting the base portion; a color pattern positioned in the second light-blocking area so as to contact the base portion; a first wavelength conversion pattern positioned on the second color filter so as to wavelength-convert light having a first color into light having a second color; and a second wavelength conversion pattern positioned on the third color filter so as to wavelength-convert light having the first color into light having a third color different from light having the second color. The color pattern and the first color filter comprise the same color material.
Abstract:
A quantum dot, a color conversion panel, and a display device, the quantum dot including a core; and a shell layer positioned outside of the core, wherein at least one of the core and the shell layer is doped with aluminum, silicon, titanium, magnesium, or zinc, and the core includes a Group III-V compound.
Abstract:
A display device is provided. A display device includes a plurality of pixels arranged in a row axis and in a column axis that intersects the row axis, a first substrate on which a light-emitting element disposed in each of the pixels is disposed, a second substrate which faces the first substrate, and a first wavelength conversion pattern disposed on the second substrate in a first pixel column and which converts wavelength of light emitted from the light-emitting element. The first wavelength conversion pattern includes a first main pattern part arranged in a stripe fashion along the column axis and a protruding pattern part projected from the first main pattern part toward at least one of first and second directions of the row axis.
Abstract:
Provided are a wavelength conversion layer and a display device. A color conversion element comprises: a wavelength conversion layer; one or more low refractive layers which are disposed on and/or under the wavelength conversion layer and have a lower refractive index than the wavelength conversion layer; and one or more capping layers which are disposed between the wavelength conversion layer and the low refractive layers and/or on a surface opposite to a surface of each of the low refractive layers which faces the wavelength conversion layer.
Abstract:
An organic light emitting display device comprising: a substrate; a first pixel electrode disposed on the substrate; a pixel defining film disposed on the first pixel electrode and having a first opening at least partially exposing the first pixel electrode; a first organic light emitting layer disposed on the pixel defining film and overlapping with the first opening of the pixel defining film; and a black matrix disposed on the first organic light emitting layer and having a first opening overlapping with the first organic light emitting layer. Light having passed through the first opening of the black matrix is one of red light, green light, and blue light. The first opening of the black matrix may have a shape with a curved portion.
Abstract:
An LCD panel, comprises substrates facing each other, a liquid crystal layer disposed between the substrates and liquid crystal alignment layers, each sandwiched between the liquid crystal layer and a respective one of the substrates, wherein the liquid crystal alignment layers comprises hydrocarbon derivative having perfluorocarbon group.
Abstract:
A liquid crystal composition includes: at least one of compounds represented by Formula 1: in the Formula 1, R—* and R′—* are each independently any one of *—H, *—F, *—Cl, *—I, *—Br, a C1-12 alkyl group, a C1-12 alkoxy group, and a cyano group; *—Z1—* and *—Z2—* are each independently any one of *—COO—*, *—OCO—*, *—CF2O—*, *—OCF2—*, *—CH2O—*, *—OCH2—* *—SCH2—*, *—CH2S—*, *—C2F4—*, *—CH2CF2—*, *—CF2CH2—*, *—(CH2)m—*, *—CH═CH—*, *—CF═CF—*, *—CH═CF—*, *—CF═CH—*, *—C≡C—*, *—CH═CHCH2O—*, or a single bond; and are each independently any one of n1 and n2 are each independently 0 to 3; m is 2 to 5; and L1-*, L2-*, L3-*, L4-*, L5-*, L6-*, L7-*, and L8-* are each independently any one of *—H, *—F, *—Cl, *—OCF3, *—CF3, *—CH2F, or *—CHF2, where “*” indicates a point of attachment.