Abstract:
Gate-driving circuitry of a thin film transistor array panel is formed on the same plane as a display area of the transistor array panel. The gate-driving circuitry includes driving circuitry and signal lines having apertures. Thus, a sufficient amount of light, even though illuminated from the thin film transistor array panel side, can reach a photosetting sealant overlapping at least in part the gate-driving circuitry. The thin film transistor array panel and the counter panel are put together air-tight and moisture-tight. Consequently, the gate-driving circuitry can avoid corrosion by moisture introduced from outside. Gate-driving circuitry malfunctions can also be reduced.
Abstract:
Gate-driving circuitry of a thin film transistor array panel is formed on the same plane as a display area of the transistor array panel. The gate-driving circuitry includes driving circuitry and signal lines having apertures. Thus, a sufficient amount of light, even though illuminated from the thin film transistor array panel side, can reach a photosetting sealant overlapping at least in part the gate-driving circuitry. The thin film transistor array panel and the counter panel are put together air-tight and moisture-tight. Consequently, the gate-driving circuitry can avoid corrosion by moisture introduced from outside. Gate-driving circuitry malfunctions can also be reduced.
Abstract:
A gate-on voltage generator that can enhance display quality at low temperatures, a driving device, and a display apparatus having the same, in which the gate-on voltage generator includes a temperature sensor having an operational amplifier configured to receive a driving voltage and produce a temperature-dependent variable voltage, the level of which varies according to the ambient temperature, and a charge pumping unit shifting the temperature-dependent variable voltage by the voltage level of a pulse signal and generating a gate-on voltage.
Abstract:
In a display panel and a display apparatus having the display panel, the display panel includes array and opposite substrates. The array substrate includes display and peripheral areas. Gate and source lines are formed in the display area. A gate driving part and first and second clock lines are formed in the peripheral area. The gate driving part outputs gate signals to the gate line. The first and second clock lines respectively transmit first and second clock signals to the gate driving part. The opposite substrate is combined with the array substrate and includes a common electrode layer. The common electrode layer has an opening portion patterned to expose the first and second clock lines. The exposed portions of the first and second clock lines have substantially the same area. Thus, delays of the gate signals may be minimized and distortion of the gate signals may be prevented.