Abstract:
There are provided a back plane for a flat panel display and a method of manufacturing the back plane, and more particularly, a back plane for an organic light-emitting display device, which enables front light-emitting, and a method of manufacturing the back plane. The back plane for a flat panel display includes: a substrate; a gate electrode on the substrate; a first capacitor on the substrate, the first capacitor comprising a first electrode, an insulation pattern layer on the first electrode, and a second electrode on the insulation pattern layer; a first insulation layer on the substrate to cover the gate electrode and the first capacitor; an active layer on the first insulation layer to correspond to the gate electrode; and a source electrode and a drain electrode on the substrate to contact a portion of the active layer.
Abstract:
A pixel circuit and a display device having the pixel circuit are disclosed. One inventive aspect includes a switching thin-film TFT and a light sensing TFT. The switching thin-film TFT includes a first source electrode electrically connected to a data line. A first gate electrode of the switching thin-film TFT and a second source electrode of the light sensing TFT are electrically connected to a first gate line. A first drain electrode of the switching thin-film TFT and a second drain electrode of the light sensing TFT are electrically connected to a pixel electrode.
Abstract:
A method of forming an oxide semiconductor device may be provided. In the method, a substrate comprising a first major surface and a second major surface that faces away from the first major surface may be provided. An oxide semiconductor device may be formed over the first major surface to provide an intermediate device, and the semiconductor device may comprise an oxide active layer. The intermediate device may be subjected to ultraviolet (UV) light (e.g., ultraviolet ray irradiation process) for a first period, and subjected to heat (e.g., thermal treatment process) for a second period. The first and second periods may at least partly overlap.
Abstract:
An organic light-emitting display apparatus includes a substrate. A capacitor is formed on the substrate. The capacitor includes a first lower electrode, a second lower electrode, an upper electrode, a first insulating layer disposed between the first lower electrode and the second lower electrode, and a second insulting layer disposed between the second lower electrode and the upper electrode. A thin film transistor (TFT) includes a gate electrode disposed on a same layer as the first lower electrode, an active layer, and source and drain electrodes disposed on a same layer as the upper electrode. A wiring includes the same material layer as the second lower electrode.
Abstract:
Disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.