Abstract:
A display device driven in one of a first mode and a second mode includes a first pixel area which includes first pixels, a second pixel area which includes the second pixels, a first boundary area which is included in the second pixel area and to be positioned between boundary portions of the first pixel area and the second pixel area, and a luminance controller which controls first boundary data corresponding to the first boundary area so that luminance of the first boundary area is gradually changed corresponding to a first data signal applied to the first pixels and the second pixels when the display device is driven in the second mode.
Abstract:
A display device including a first dot including a first shared pixel and a first dedicated pixel, a second dot disposed closest to the first dot in a first direction and including a second shared pixel and a second dedicated pixel, a third dot disposed in the first direction from the second dot and including a third shared pixel and a third dedicated pixel, and a first dummy dot disposed closest to the third dot in the first direction and including a first dummy pixel, in which the first shared pixel and the second shared pixel are configured to emit light having different colors, the first dedicated pixel, the second dedicated pixel, and the third dedicated pixel are configured to emit light having the same color, and the third shared pixel and the first dummy pixel are configured to emit light having different colors.
Abstract:
A display device may include a pixel, an emission control driver, and a timing controller. The emission control driver may supply an emission control signal set for controlling emission periods of the pixel. The timing controller may receive a received bit stream that includes a first bit set and a second bit set, may determine a first duty ratio of the emission control signal set using bits of the first bit set without using any bit of the second bit set. The first bit set may include at least two bits. The second bit set may include at least one bit. The emission control signal set may control the pixel to operate according to the first duty ratio for each frame of a first frame group.
Abstract:
A display device including a first dot including a first shared pixel and a first dedicated pixel, a second dot disposed closest to the first dot in a first direction and including a second shared pixel and a second dedicated pixel, a third dot disposed in the first direction from the second dot and including a third shared pixel and a third dedicated pixel, and a first dummy dot disposed closest to the third dot in the first direction and including a first dummy pixel, in which the first shared pixel and the second shared pixel are configured to emit light having different colors, the first dedicated pixel, the second dedicated pixel, and the third dedicated pixel are configured to emit light having the same color, and the third shared pixel and the first dummy pixel are configured to emit light having different colors.
Abstract:
A display device may include a pixel, an emission control driver, and a timing controller. The emission control driver may supply an emission control signal set for controlling emission periods of the pixel. The timing controller may receive a received bit stream that includes a first bit set and a second bit set, may determine a first duty ratio of the emission control signal set using bits of the first bit set without using any bit of the second bit set. The first bit set may include at least two bits. The second bit set may include at least one bit. The emission control signal set may control the pixel to operate according to the first duty ratio for each frame of a first frame group.
Abstract:
A data driving circuit according to an exemplary embodiment includes a controller configured to generate a storing control signal which controls a memory storing direction and a read control signal which controls a memory reading direction, the memory storing direction and the memory reading direction determined according to a rotation signal; a memory in which a sensing signal corresponding to a touch state of one or more touch sensors is configured to be stored in accordance with the storing control signal; and a rendering unit configured to read the sensing signal according to the memory reading direction of the read control signal and to combine a first image data signal with the sensing signal so as to generate a second image data signal.