Abstract:
An organic light display device includes a first substrate, light emitting structures, a second substrate and a reflective member. The first substrate includes a plurality of pixel regions, each pixel region including a plurality of sub-pixel regions, and a reflective region which surrounds the sub-pixel regions. The reflective region excludes the sub-pixel regions. The light emitting structures are respectively disposed in the sub-pixel regions on the first substrate. The second substrate is opposite to the first substrate. The reflective member is disposed in the reflective region on the lower surface of the second substrate. First openings exposing the sub-pixel regions and a second opening exposing at least a portion the reflective region are located in the reflective member.
Abstract:
An organic light emitting display device having high transmittance with respect to external light and a method of manufacturing the same. The organic light emitting display device includes a substrate; a plurality of pixels formed on the substrate, each of the pixels including a first region that emits light and a second region that transmits external light; a plurality of thin film transistors disposed in the first region of each pixel; a plurality of first electrodes disposed in the first region of each pixel and electrically connected to the thin film transistors, respectively; a second electrode formed opposite to the plurality of first electrodes and comprising a plurality of transmission windows corresponding to the second regions; and an organic layer formed between the first electrodes and the second electrode. The transmission windows can be formed in the second electrode, that is, a cathode.
Abstract:
Embodiments may disclose an organic light-emitting display device including a first substrate including a pixel area emitting light in a first direction, and a transmittance area that is adjacent to the pixel area and transmits external light; a second substrate facing the first substrate and encapsulating a pixel on the first substrate; an optical pattern array on the first substrate or the second substrate to correspond to the transmittance area, the optical pattern array being configured to transmit or block external light depending on the transmittance area according to a coded pattern; and a sensor array corresponding to the optical pattern array, the sensor array being arranged in a second direction that is opposite to the first direction in which the light is emitted, the second array receiving the external light passing through the optical pattern array.
Abstract:
An organic light emitting display device includes a first substrate, a light emitting structure, a light transmitting member, and a second substrate. The first substrate includes a pixel region and a transparent region. The light emitting structure is positioned in the pixel region of the first substrate. The light transmitting member is positioned in the transparent region. The second substrate is disposed on the light emitting structure and the light transmitting member. The light is not refracted in interfaces between the light transmitting member and the first substrate and between the light transmitting member and the second substrate.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a plurality of pixels and each pixel includes a first area configured to emit light and a second area configured to transmit external light therethrough. Each pixel also includes a first electrode formed in the first area and an organic layer formed in the first area and the second area, wherein the organic layer covers the first electrode. Each pixel further includes a second electrode covering at least the organic layer formed in the first area and having a first opening exposing at least a portion of the organic layer formed in the second area. A reflection prevention layer is formed substantially covering the organic layer formed in the second area. The reflection prevention layer has a refractive index lower than that of the organic layer.
Abstract:
An organic light emitting display apparatus and a method of manufacturing the same are provided. The apparatus includes a substrate, a first electrode formed on the substrate, an intermediate layer formed on the first electrode. The intermediate layer includes an organic emission layer. A second electrode is formed on the intermediate layer, and a capping layer is formed on the second electrode in a first region. The capping layer includes a first edge portion and at least two layers. A third electrode is formed on the second electrode in a second region. The second region is not overlapped with the first region, and the third electrode includes a second edge portion having a side portion facing a side portion of the first edge portion of the capping layer. Electric properties and image quality may be improved.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a plurality of pixels and each pixel includes a first area configured to emit light and a second area configured to transmit external light therethrough. Each pixel also includes a first electrode formed in the first area and an organic layer formed in the first area and the second area, wherein the organic layer covers the first electrode. Each pixel further includes a second electrode covering at least the organic layer formed in the first area and having a first opening exposing at least a portion of the organic layer formed in the second area. A reflection prevention layer is formed substantially covering the organic layer formed in the second area. The reflection prevention layer has a refractive index lower than that of the organic layer.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.
Abstract:
An organic light emitting display device including: a first emission area including a first organic light emitting diode; a second emission area arranged adjacent to the first emission area and not overlapping with the first emission area, the second emission area including a second organic light emitting diode; a pixel circuit unit electrically connected to the first organic light emitting diode and the second organic light emitting diode; and a transmissive area adjacent to the first and second emission areas and not overlapping with the first and second emission areas, the transmissive area configured to transmit external light therethrough.
Abstract:
An organic light-emitting diode (OLED) display is disclosed. In one aspect, the OLED display includes a plurality of pixels and each pixel includes a first area configured to emit light and a second area configured to transmit external light therethrough. Each pixel also includes a first electrode formed in the first area and an organic layer formed in the first area and the second area, wherein the organic layer covers the first electrode. Each pixel further includes a second electrode covering at least the organic layer formed in the first area and having a first opening exposing at least a portion of the organic layer formed in the second area. A reflection prevention layer is formed substantially covering the organic layer formed in the second area. The reflection prevention layer has a refractive index lower than that of the organic layer.