Abstract:
An image display is disclosed. In one embodiment, the display includes a first display panel comprising i) a first image display portion configured to display a first image and ii) a light transmissive portion formed outside the first image display portion and configured to display a second image. The display further includes i) a second display panel spaced apart from the first display panel and configured to generate the second image and ii) an image shift unit configured to shift the generated second image toward the light transmissive portion of the first display panel so that the shifted second image is projected through the light transmissive portion.
Abstract:
A flat panel display device and a method of manufacturing the same. The method of manufacturing the flat panel display device includes: forming a display on a substrate; preparing an organic layer mask comprising a first mask body, a regulator extending from the first mask body and contacting the organic layer, and a tunnel having a space between the first mask body and the regulator; forming an organic layer covering the display in a region divided by the regulator of the organic layer mask, and condensing a part of the organic layer permeating through the tunnel; preparing an inorganic layer mask; and forming an inorganic layer covering the organic layers formed in the region divided by the regulator through the inorganic layer mask and in the tunnel.
Abstract:
An organic light emitting diode (OLED) display is disclosed. In one embodiment, the OLED display includes an organic light emitting element formed over a substrate and an encapsulation portion covering the organic light emitting element. Further, the encapsulation portion may include at least one organic layer and at least one inorganic layer, wherein ends of the inorganic layer and the organic layer directly contact the substrate, and wherein the organic layer is thicker than the inorganic layer.
Abstract:
An organic light-emitting display apparatus includes a substrate; a display unit which defines an active area on the substrate and includes a thin film transistor and an organic light-emitting device electrically connected to each other; and an encapsulation layer disposed on a top surface and a side surface of the display unit, the encapsulation layer including at least a first inorganic layer, a first organic layer, and a second inorganic layer that are sequentially stacked, and the first organic layer covers the first inorganic layer.
Abstract:
A flexible organic light-emitting display apparatus includes a flexible substrate, a barrier layer on the flexible substrate, a display portion on the barrier layer, an encapsulation layer covering the display portion, and a porous layer between the flexible substrate and the display portion.
Abstract:
An image display is disclosed. In one embodiment, the display includes a first display panel comprising i) a first image display portion configured to display a first image and ii) a light transmissive portion formed outside the first image display portion and configured to display a second image. The display further includes i) a second display panel spaced apart from the first display panel and configured to generate the second image and ii) an image shift unit configured to shift the generated second image toward the light transmissive portion of the first display panel so that the shifted second image is projected through the light transmissive portion.
Abstract:
An organic light-emitting display apparatus includes a substrate; a display unit which defines an active area on the substrate and includes a thin film transistor and an organic light-emitting device electrically connected to each other; and an encapsulation layer disposed on a top surface and a side surface of the display unit, the encapsulation layer including at least a first inorganic layer, a first organic layer, and a second inorganic layer that are sequentially stacked, and the first organic layer covers the first inorganic layer.
Abstract:
A barrier film composite includes a film with an undulating surface; and at least one decoupling layer and at least one barrier layer disposed on the undulating surface of the film.
Abstract:
A method of manufacturing an organic light emitting diode (OLED) display is disclosed. In one aspect, the method includes preparing a substrate, forming a spacer on the substrate along an edge of the substrate, forming a driving circuit and an organic light emitting diode on the substrate to be surrounded by the spacer and forming an encapsulation thin film so as to substantially cover the driving circuit and the organic light emitting diodel. The mask that is used in the forming of the driving circuit and the organic light emitting diode is supported by and contacts the spacer.