Abstract:
A display device includes: a display panel including a first area and a second area, wherein the first area includes first sub-pixels, and the second area includes second sub-pixels; and a power supply unit that generates a first driving voltage and a second driving voltage greater than the first driving voltage to supply the first and second driving voltages to the display panel. The first sub-pixels receive the first driving voltage, and the second sub-pixels receive the first driving voltage or the second driving voltage.
Abstract:
A pixel including an organic light emitting diode; a first transistor for controlling the amount of current flowing from a first driving power source to a second driving power source via the organic light emitting diode, corresponding to a voltage of a first node; a second transistor coupled between the first node and a second node, the second transistor being turned on when a scan signal is supplied to an ith (i is a natural number) scan line; a third transistor coupled between the second node and an anode electrode of the organic light emitting diode; a first capacitor coupled between a data line and the second node; and a fourth transistor coupled between an initialization power source and the anode electrode of the organic light emitting diode. The fourth transistor is turned on in response to a first control signal being supplied to a first control line.
Abstract:
The display device includes a first base portion; a semiconductor layer disposed on the first base portion and including a source region, a drain region and a channel region; a first insulating layer disposed on the semiconductor layer; a gate line disposed on the first insulating layer extending in a first direction and overlapping the channel region; a second insulating layer disposed on the gate line; a first connection plug formed in the first and second insulating layer filling a first connection hole exposing the source region; a second connection plug formed in the first and second insulating layer filling a second connection hole exposing the drain region; a first and second conductive pattern disposed on the second insulating layer; a pixel electrode disposed on the second insulating layer and electrically connected to the first conductive pattern; and a data line disposed on the second insulating layer to extend in a second direction.
Abstract:
A display device comprises an active layer on a substrate, a first metal layer above the active layer, a second metal layer above the first metal layer, a first transistor comprising a semiconductor region in the active layer, a drain electrode on a first side of the semiconductor region, a source electrode on a second side opposite the first side of the semiconductor region, and a gate electrode in the second metal layer, a first capacitor comprising a first capacitor electrode in the first metal layer and electrically connected to the gate electrode of the first transistor, a second capacitor comprising a second capacitor electrode in the first metal layer and electrically connected to a driving voltage line supplying a driving voltage, and a shielding electrode in the second metal layer and overlapping with the first capacitor electrode, the second capacitor electrode, and the drain electrode of the first transistor.
Abstract:
A display device includes a display area including a first display area and a second display area; a first pixel circuit; a first light emitting element; a second pixel circuit; second light emitting elements; and a driving circuit overlapping the second light emitting elements in a plan view, wherein an edge of the display area includes a straight portion and a round portion, the second light emitting elements that are near each other in a first direction and a second direction configure a light emitting element group, and a number of the second light emitting elements configuring the light emitting element group disposed on the round portion is different from a number of the second light emitting elements configuring the light emitting element group disposed on the straight portion.
Abstract:
A display device includes: a display panel including a first area and a second area, wherein the first area includes first sub-pixels, and the second area includes second sub-pixels; and a power supply unit that generates a first driving voltage and a second driving voltage greater than the first driving voltage to supply the first and second driving voltages to the display panel. The first sub-pixels receive the first driving voltage, and the second sub-pixels receive the first driving voltage or the second driving voltage.
Abstract:
An organic light emitting display device includes a plurality of pixels. A pixel on an ith horizontal line includes a first transistor coupled between a first power source and a first node and having a gate electrode coupled to a second node. An organic light emitting diode is coupled between the first node and a second power source. A second transistor is coupled between the second and third nodes and is turned on when a first scan signal is supplied to an ith first scan line. A third transistor is coupled between the third and first nodes. A first capacitor is coupled between an ith control line and the second node. A second capacitor is coupled between the third node and a data line. The pixels are simultaneously driven during first, second, and third periods of a frame period and sequentially driven during a fourth period of the frame period.
Abstract:
A gate circuit according to an exemplary embodiment of the present inventive concept comprises a plurality of stages, each receiving a clock signal and outputting a gate signal and a carry signal. One of the plurality of stages includes a first transistor of which a first terminal and a control terminal are connected to each other and a carry signal of a stage before previous stage is input to the first terminal and the control terminal and a second transistor of which a gate signal of the previous stage is input to a first terminal, a control terminal is connected with a second terminal of the first transistor, and an output terminal is connected to a first node.
Abstract:
A display device includes pixels arranged in a matrix form, gate lines extending in a first direction; data lines extending in a second direction, first and second unit pixel columns, each defined by adjacent data lines and the pixels connected thereto, first and second channels which transmit data signals to each of the first and second unit pixel columns, and a line selector which connects the first and second channels to the data lines and provides data voltages to the data lines in response to control signals, where a pixel connected to a first gate line is connected to a data line at a side thereof, a pixel connected to a second gate line is connected to a data line at the other side thereof, and each of the first and second channels is connected to a data line of each of the first and second unit pixel columns.