Abstract:
Provided is an organic light emitting display apparatus. The apparatus may include a substrate including a display region where an image is realized and a non-display region surrounding the display region. The apparatus includes an organic light emitting unit including a first electrode, an intermediate layer, and a second electrode, which are disposed in the display region and are sequentially stacked on the substrate. The apparatus also includes a first inorganic film including a first low temperature viscosity transition (LVT) inorganic material having a first viscosity transition temperature, and covering the organic light emitting unit; and a second inorganic film including a second LVT inorganic material having a second viscosity transition temperature lower than the first viscosity transition temperature, and formed in the non-display region.
Abstract:
An organic light-emitting display apparatus includes: a substrate, and an organic light-emitting device disposed on the substrate. The organic light-emitting device includes a first electrode, a second electrode, and an intermediate layer including at least an organic emission layer. In addition, the organic light-emitting display apparatus further includes a thin film encapsulating layer disposed on the organic light-emitting device. The thin film encapsulating layer includes at least one inorganic film including a low temperature viscosity transition (LVT) inorganic material. The LVT inorganic material includes tin oxide and at least one of boron oxide (B2O3), bismuth oxide (Bi2O3), barium oxide (BaO), and ammonium dihydrogen phosphate (NH4H2PO4).
Abstract translation:有机发光显示装置包括:基板和设置在基板上的有机发光装置。 有机发光器件包括第一电极,第二电极和至少包括有机发射层的中间层。 此外,有机发光显示装置还包括设置在有机发光装置上的薄膜封装层。 薄膜封装层包括至少一种包含低温粘度转变(LVT)无机材料的无机薄膜。 LVT无机材料包括氧化锡和氧化硼(B 2 O 3),氧化铋(Bi 2 O 3),氧化钡(BaO)和磷酸二氢铵(NH 4 H 2 PO 4)中的至少一种。
Abstract:
An organic light-emitting display device includes: a substrate; an organic light-emitting unit that is formed on the substrate and comprises a first electrode, an intermediate layer, and a second electrode; an organic film formed on the organic light-emitting unit; a first elastic layer that is formed on the organic film and comprises an elastomer; and a first inorganic film that is formed on the first elastic layer and comprises a low temperature viscosity transition (LVT) inorganic material.
Abstract:
An organic light-emitting display and methods of manufacturing the same are disclosed. In one aspect, an organic light-emitting apparatus includes a substrate, a display unit on the substrate, a step compensation layer formed on the display unit and supplementing a step on a surface of the display unit, a first intermediate layer formed on the step compensation layer, and an encapsulation layer formed on the first intermediate layer and sealing the display unit.
Abstract:
A display device includes a base layer including first and second portions, and a third portion between the first and second portions and configured to be bent, folded, or rolled, a light emitting element layer on one surface of the base layer at the first portion, and including light emitting elements, a circuit board on the one surface of the base layer at the third portion, and electrically connected to the light emitting elements, protective patterns spaced apart from each other on another surface of the base layer, including a resin, and also including first protective patterns spaced apart from each other on the other surface of the base layer at the first portion, and at least one second protective pattern on the other surface of the base layer at the second portion, and at least one of a heat dissipation layer or a cushion layer below the protective patterns.
Abstract:
A display device includes a base layer including first and second portions, and a third portion between the first and second portions and configured to be bent, folded, or rolled, a light emitting element layer on one surface of the base layer at the first portion, and including light emitting elements, a circuit board on the one surface of the base layer at the third portion, and electrically connected to the light emitting elements, protective patterns spaced apart from each other on another surface of the base layer, including a resin, and also including first protective patterns spaced apart from each other on the other surface of the base layer at the first portion, and at least one second protective pattern on the other surface of the base layer at the second portion, and at least one of a heat dissipation layer or a cushion layer below the protective patterns.
Abstract:
A thin film deposition apparatus, a deposition method using the same, and a method of manufacturing an organic light-emitting display apparatus by using the apparatus are provided. A thin film deposition apparatus is provided that includes a chamber containing a substrate holder on which a substrate is mounted, a plurality of rotary shaft units that change rotation and an inclination angle of the substrate holder, and a target unit that supplies a thin film material for formation on the substrate.
Abstract:
An organic light-emitting display apparatus includes a substrate, a display unit, an encapsulation layer, and a protection layer. The display unit is formed on the substrate. The encapsulation layer covers the display unit. The protection layer is formed on the encapsulation layer. The encapsulation layer is formed of a low temperature viscosity transition (LVT) inorganic material. The protection layer is formed of an elastic, adhesive material to protect the encapsulation layer from an external force.
Abstract:
An organic light-emitting display apparatus and a method of manufacturing the organic light-emitting display apparatus. The organic light-emitting display apparatus includes a substrate; a display unit on the substrate; and an encapsulating layer encapsulating the display unit. The encapsulating layer is formed of a low-temperature viscosity transition inorganic material. The encapsulating layer includes nitrogen.
Abstract:
A method of manufacturing an organic light-emitting display apparatus includes disposing a low melting glass (LMG) thin film to cover a display unit disposed on a substrate, and radiating an energy beam onto the LMG thin film. Accordingly, an encapsulation layer having excellent sealing characteristics may be rapidly formed, and thus manufacturing process efficiency and product reliability may be improved.