Abstract:
A display device includes a substrate, a first insulating layer disposed on the substrate, a through portion passing through the substrate and the first insulating layer, a display unit disposed on the first insulating layer and including a plurality of pixels surrounding at least a portion of the through portion, and a dummy pixel unit. Each pixel includes a light-emitting element including a pixel electrode and an opposite electrode facing each other, and an emission layer disposed between the pixel electrode and the opposite electrode. The dummy pixel unit includes a plurality of dummy pixels disposed between the through portion and the display unit, and including a metal pattern including a same material as the pixel electrode. The dummy pixels are disposed adjacent to the display unit.
Abstract:
An organic light-emitting display apparatus includes a display substrate and a thin film encapsulation layer on the display substrate. The display substrate includes at least one hole, a thin film transistor, a light-emitting portion electrically connected to the thin film transistor, and a plurality of insulating layers. The light-emitting portion includes a first electrode, an intermediate layer, and a second electrode. The display substrate includes an active area, an inactive area between the active area and the hole, and a plurality of insulating dams. Each insulating dam includes at least one layer. The inactive area includes a first area different from a laser-etched area and a second laser-etched area.
Abstract:
A display apparatus includes a substrate including a data line extending in a first direction, a voltage line extending in the first direction, and a first circuit disposed in a non-display area and electrically connected to the data line and the voltage line, wherein the first circuit includes a thin-film transistor including a semiconductor layer and a gate electrode overlapping a semiconductor layer, where one side of the semiconductor layer is electrically connected to the data line and another side is electrically connected to the voltage line, a first capacitor including a first lower electrode not overlapping the semiconductor layer and a first upper electrode on the first lower electrode, and a second capacitor including a second lower electrode not overlapping the semiconductor layer and a second upper electrode on the second lower electrode, and the gate electrode is at a same layer as the data line and the voltage line.
Abstract:
A display apparatus includes a substrate including at least one hole disposed in a hole area of the substrate, a thin film transistor disposed on the substrate, a light-emitting component disposed on the substrate and electrically connected to the thin film transistor, an insulating layer disposed on the substrate, a thin film encapsulation layer disposed on the substrate, and a laser blocking layer. The substrate includes a display area and a non-display area that is disposed between the display area and the hole area. The laser blocking layer is disposed on the insulating layer in the non-display area.
Abstract:
A display device includes a through portion passing through a display layer. The display includes a plurality of scan lines above the substrate and extending in a first direction, a plurality of data lines extending in a second direction, and a plurality of pixels connected to the scan lines and data lines. The data lines include a first data line and a second data line disconnected by the through portion, and a third data line spaced apart from the through portion along the first direction. The first data line is electrically connected with the third data line.
Abstract:
An organic light-emitting display including a substrate, an insulating layer on the substrate, the substrate and the insulating layer having an opening therethrough penetrating, a pixel array on the insulating layer, the pixel array including a plurality of pixels that surround the opening, a first pixel adjacent to the opening from among the plurality of pixels includes a pixel electrode layer, an intermediate layer on the pixel electrode layer, and an opposite electrode layer on the intermediate layer, and a stepped portion on the substrate and adjacent to the opening, the stepped portion having an under-cut step, wherein the intermediate layer including an organic emission layer, and wherein at least one of the intermediate layer and the opposite electrode layer extends toward the opening and is disconnected by the stepped portion.
Abstract:
An organic light-emitting display apparatus includes a display substrate and a thin film encapsulation layer on the display substrate. The display substrate includes at least one hole, a thin film transistor, a light-emitting portion electrically connected to the thin film transistor, and a plurality of insulating layers. The light-emitting portion includes a first electrode, an intermediate layer, and a second electrode. The display substrate includes an active area, an inactive area between the active area and the hole, and a plurality of insulating dams. Each insulating dam includes at least one layer. The inactive area includes a first area different from a laser-etched area and a second laser-etched area.
Abstract:
An organic light-emitting display apparatus including: a pixel including a first region realizing an image and a second region through which external light is transmitted, a driving circuit unit disposed in the first region, a wire area including a third region and a fourth region, a wire for transferring a signal to the driving circuit unit, a first electrode disposed in the first region and electrically connected to the driving circuit unit, a pixel defining layer disposed in the first region and including a first opening and a second opening, a second electrode disposed in the first region opposite the first electrode, an organic emission layer disposed between the first electrode and the second electrode, and an insulating structure disposed between the substrate and the pixel defining layer and including at least one insulating layer that includes a third opening corresponding to the second region and the fourth region.
Abstract:
An organic light-emitting diode (OLED) display and a method of manufacturing the same are disclosed. In one aspect, the OLED display includes a pixel disposed over a substrate, the pixel including a first region configured to generate an image and a second region configured to transmit external light. The pixel also includes a first transistor including a first active layer disposed in the first region, a first gate electrode disposed over the first active layer and insulated from the first active layer, and at least one electrode pattern disposed over the first gate electrode and electrically connected to the first active layer. A first insulation layer is disposed between the first gate electrode and the electrode pattern, the first insulation layer including a lower insulation layer and an upper insulation layer disposed over the lower insulation layer.
Abstract:
A thin film transistor substrate and an organic light-emitting diode (OLED) display are disclosed. In one aspect, the OLED includes a thin film transistor substrate. The thin film transistor substrate includes a substrate, a source electrode formed over the substrate, a drain electrode formed over the substrate and spaced apart from the source electrode, an oxide semiconductor layer, and a gate electrode. The oxide semiconductor layer includes a source area at least partially overlapping the source electrode, a drain area at least partially overlapping the drain electrode, and a channel area formed between the source area and the drain area. The gate electrode, which is insulated from the oxide semiconductor layer, has a first width at a first end thereof, a second width at a second end opposite to the first end thereof and the first width is different from the second width.