Abstract:
A display device includes a substrate having a display area, in which an image is displayed, and a non-display area, in which no image is displayed. The non-display area is disposed on at least one side of the display area. A plurality of pixels is disposed in the display area. An encapsulation layer is disposed on the plurality of pixels. A dam unit is disposed in the non-display area. The dam unit includes a body part and a plurality of protrusions. Each of the plurality of protrusions protrudes from the body part.
Abstract:
A display device includes a substrate having a display area, in which an image is displayed, and a non-display area, in which no image is displayed. The non-display area is disposed on at least one side of the display area. A plurality of pixels is disposed in the display area. An encapsulation layer is disposed on the plurality of pixels. A dam unit is disposed in the non-display area. The dam unit includes a body part and a plurality of protrusions. Each of the plurality of protrusions protrudes from the body part
Abstract:
An organic thin film transistor and a method of manufacturing the same, the transistor including a gate electrode; an organic semiconductor layer overlapping the gate electrode; and an insulating layer between the gate electrode and the organic semiconductor layer, the insulating layer having an organic/inorganic hybrid region, wherein the organic/inorganic hybrid region includes a polymer and an inorganic material that is chemically bonded to the polymer through a reactive group on the polymer, and the insulating layer includes a space adjacent to the polymer, the inorganic material being positioned in the space.
Abstract:
An organic light emitting display device according to an exemplary embodiment of the present disclosure includes: a first substrate provided with a thin film transistor layer where a plurality of pixels are formed; a second substrate covering the first substrate; and a sealant formed along edges of the first and second substrates to bond both of the first and second substrates, wherein the sealant is formed above the thin film transistor of the first substrate, the sealant comprises an organic sealant and a protection member formed outside of the organic sealant, and the protection member is formed of a dual layer of an inorganic layer and an elastic member.
Abstract:
An organic light emitting display device having a display substrate; a display element layer formed on the display substrate and including a plurality of pixels, a thin film encapsulation layer which covers and protects the display substrate and the display element layer; a function film disposed on the thin film encapsulation layer, a first adhesive layer disposed between the thin film encapsulation layer and the functional film, a window attached onto the functional film which protects the display element layer, and a second adhesive layer disposed between the functional film and the window, in which the first adhesive layer and the second adhesive are formed by deposition, a surface processing is performed, and facing surfaces are adhered with each other.
Abstract:
An organic light emitting display device includes a substrate having a non-light emitting region and a light emitting region, a photochromic layer in a path of light that is emitted from the light emitting region and a light blocking layer on the photochromic layer, wherein the light blocking layer comprises a plurality of light blocking patterns that are spaced from each other, the light blocking patterns overlap the light emitting region, and a space between adjacent light blocking patterns exposes the non-light emitting region.
Abstract:
A display device includes first and second pixel electrodes disposed on a substrate and spaced apart from each other. An inorganic insulating layer is disposed on the substrate and partially overlaps the first and second pixel electrodes. A metal layer structure is disposed on the inorganic insulating layer and includes first and second openings overlapping the first and second pixel electrodes, respectively. First and second light-emitting layers are disposed on the first and second pixel electrodes, respectively. First and second common electrodes are disposed on the first and second light-emitting layers, respectively. The metal layer structure includes first and second metal layers alternately stacked with each other in which the first metal layers comprise uppermost and lowermost layers thereof. Each of the first metal layers includes metal tips that protrude beyond the second metal layers and are positioned on sidewalls of each of the first and second openings.
Abstract:
A display device may include a first electrode, a second electrode, an emission layer, an intervening layer, and a first encapsulation layer. The second electrode may overlap the first electrode. The emission layer may be disposed between the first electrode and the second electrode, may overlap the first electrode, and may include a light emitting material. The intervening layer may directly contact the second electrode, may be spaced from each of the first electrode and the emission layer, and may include a fluorine compound. A first section of the first encapsulation layer may overlap the emission layer. The intervening layer may be positioned between the second electrode and a second section of the first encapsulation layer.
Abstract:
A deposition mask for making a display device, the deposition mask includes: a frame including a first opening; a first member disposed above the first opening of the frame and including a first portion surrounding at least one second opening and a second portion disposed in the second opening and physically separated from the first portion; and a second member disposed on the first member and including a first connecting portion connected to the frame and a second mesh portion overlapping the second portion.
Abstract:
A display device includes a substrate having a display area, in which an image is displayed, and a non-display area, in which no image is displayed. The non-display area is disposed on at least one side of the display area. A plurality of pixels is disposed in the display area. An encapsulation layer is disposed on the plurality of pixels. A dam unit is disposed in the non-display area. The dam unit includes a body part and a plurality of protrusions. Each of the plurality of protrusions protrudes from the body part.