Abstract:
Disclosed is a display device including: a substrate including a display area for displaying an image and a peripheral area neighboring the display area; a plurality of signal lines formed in the display area; a pad formed in the peripheral area; and a plurality of connection wires for connecting the signal lines and the pad, wherein a first connection wire and a second connection wire neighboring the first connection wire from among the plurality of connection wires are disposed on different layers, and the first connection wire and the second connection wire, which are formed to extend from the pad and are bent at least twice to have at least one being bent toward backward direction, are disposed in the peripheral area.
Abstract:
An organic light emitting display (OLED) device includes an organic light emitting diode having an anode and a cathode. The organic light emitting diode is configured to receive a reference voltage. A control transistor includes a first control electrode and a first semiconductor active layer. The control transistor is configured to receive a control signal. A driving transistor includes a second control electrode that is electrically connected to the control transistor, an input electrode that is configured to receive a power voltage, an output electrode that is electrically connected to the anode of the organic light emitting diode, and a second semiconductor active layer that includes a different material from that of the first semiconductor active layer. A shielding electrode is disposed on the second semiconductor active layer, overlapping the driving transistor, and configured to receive the power voltage.
Abstract:
Disclosed herein is an organic light emitting display device capable of stably compensating for a threshold voltage of a driving transistor. The organic light emitting display device according the present invention includes pixels, each for storing a voltage of a data signal in a storage capacitor through a first threshold voltage different from a second threshold voltage of a driving transistor for driving the pixel; scan lines and light emitting control lines respectively coupled to the pixels; and data lines for supplying the data signal to the pixels.
Abstract:
An organic light emitting display (OLED) device includes an organic light emitting diode having an anode and a cathode. The organic light emitting diode is configured to receive a reference voltage. A control transistor includes a first control electrode and a first semiconductor active layer. The control transistor is configured to receive a control signal. A driving transistor includes a second control electrode that is electrically connected to the control transistor, an input electrode that is configured to receive a power voltage, an output electrode that is electrically connected to the anode of the organic light emitting diode, and a second semiconductor active layer that includes a different material from that of the first semiconductor active layer. A shielding electrode is disposed on the second semiconductor active layer, overlapping the driving transistor, and configured to receive the power voltage.
Abstract:
An emissive display device includes: a light emitting diode; an n-type driving transistor comprising a first driving gate electrode, a first electrode receiving a driving voltage, a second electrode transferring an output current to the anode, and a second driving gate electrode; a second transistor connected to a data line; a third transistor configured to connect the first electrode and the first driving gate electrode of the driving transistor; a storage capacitor comprising a first storage electrode and a second storage electrode connected to the first driving gate electrode; a ninth transistor transferring an overlapping electrode voltage to the second driving gate electrode; an overlapping electrode voltage line crossing the data line and receiving the overlapping electrode voltage; and a shielding electrode at an intersection of the data line and the overlapping electrode voltage line and between the data line and the overlapping electrode voltage line.
Abstract:
An emission driver includes a plurality of stages. A stage of the plurality of stages receives a start signal, a first clock signal, a second clock signal, a protection signal, a first gate power voltage and a second gate power voltage and outputs an emission signal. The stage of the plurality of stages includes a pull-up switching element connected between a first gate power voltage terminal which receives the first gate power voltage and an emission signal output terminal which outputs the emission signal, a pull-down switching element connected between a second gate power voltage terminal which receives the second gate power voltage and the emission signal output terminal and a protection switching element which applies the first gate power voltage to a control electrode of the pull-down switching element in response to the protection signal.
Abstract:
A display apparatus includes a substrate including a display area, a peripheral area surrounding the display area, a function-adding area, of which at least a portion is surrounded by the display area, and a detour area disposed between the display area and the function-adding area. The display apparatus includes a plurality of pixel circuits disposed in the display area. A plurality of driving lines are electrically connected to the pixel circuits and extend in a direction in the display area. A first detour line is disposed in the detour area and is electrically connected to a first driving line. A second detour line is disposed in the detour area. The second detour line is electrically connected to a second driving line and is disposed in a different layer from the first detour line.
Abstract:
A display apparatus includes a substrate which includes a first pixel area and a second pixel area. A third pixel area is spaced apart from the second pixel area. A notch peripheral area is adjacent to the first, second and third pixel areas. A plurality of pixels are provided in the first, second and third pixel areas. A first scan line is disposed on the substrate. The first scan line includes a first portion disposed in the second pixel area, a second portion disposed in the third pixel area, and a third portion which connects the first portion to the second portion. The third portion is disposed in the notch peripheral area. A second scan line is disposed on the substrate in the first pixel area. A surface area of the first scan line is from about 90% to about 110% of a surface area of the second scan line.
Abstract:
An organic light emitting diode display includes a substrate, a semiconductor layer on the substrate, the semiconductor layer including a doped area and an undoped area, a first insulation layer that covers the semiconductor layer, a first conductor on the first insulation layer, a second insulation layer that covers the first conductor, a second conductor on the second insulation layer, a third insulation layer that covers the second conductor, and a third conductor on the third insulation layer, wherein, in the semiconductor layer that overlaps the first conductor, the doped area is between undoped areas.
Abstract:
A display apparatus includes a substrate which includes a first pixel area and a second pixel area. A third pixel area is spaced apart from the second pixel area. A notch peripheral area is adjacent to the first, second and third pixel areas. A plurality of pixels are provided in the first, second and third pixel areas. A first scan line is disposed on the substrate. The first scan line includes a first portion disposed in the second pixel area, a second portion disposed in the third pixel area, and a third portion which connects the first portion to the second portion. The third portion is disposed in the notch peripheral area. A second scan line is disposed on the substrate in the first pixel area. A surface area of the first scan line is from about 90% to about 110% of a surface area of the second scan line.