Abstract:
A display device which includes a substrate having a pixel unit that receiving first and second voltages is disclosed. In one aspect, the first and second power lines are coupled to the first and second voltages, and are supplied to the pixel unit via first and second power pads. In some aspects, the first and second power pads are alternately disposed while being spaced apart from each other in at least a portion of the peripheral area, and the second power pads are disposed in the space between the respective first power pads.
Abstract:
A pixel circuit comprises a light emission element; a driving transistor including a first electrode connected to the first node, a second electrode connected to a second node, and a gate electrode connected to a third node; a first transistor including a first electrode receiving a third voltage, a second electrode connected to the first node, and a gate electrode receiving a second light emission control signal; a first transistor including a first electrode connected to a first line transferring a first power voltage, a second electrode connected to the second node, and a gate electrode receiving a first light emission control signal; a first storage capacitor connected between the third node and a fourth node; and a switching transistor including a first electrode connected to a data line, a second electrode connected to the fourth node, and a gate electrode receiving a scan signal.
Abstract:
A method of driving a display device includes calculating an average load and an asymmetry by analyzing an input image data, and adjusting at least one of a high data voltage and a low data voltage, which are supplied to a display panel of the display device, based on the average load and the asymmetry.
Abstract:
A pixel circuit comprises a light emission element; a driving transistor including a first electrode connected to the first node, a second electrode connected to a second node, and a gate electrode connected to a third node; a first transistor including a first electrode receiving a third voltage, a second electrode connected to the first node, and a gate electrode receiving a second light emission control signal; a first transistor including a first electrode connected to a first line transferring a first power voltage, a second electrode connected to the second node, and a gate electrode receiving a first light emission control signal; a first storage capacitor connected between the third node and a fourth node; and a switching transistor including a first electrode connected to a data line, a second electrode connected to the fourth node, and a gate electrode receiving a scan signal.
Abstract:
An electroluminescent display for adaptive voltage control and method of driving electroluminescent display are disclosed. In one aspect, the method includes digitally driving a display panel including a plurality of pixels based on a first power supply voltage, a second power supply voltage lower than the first power supply voltage, a first data voltage and a second data voltage lower than the first data voltage. The method also includes sensing a global current provided to the display panel, generating a current detection signal based on the sensed global current, and varying at least one of the first and second data voltages based on the current detection signal.
Abstract:
A display device which includes a substrate having a pixel unit that receiving first and second voltages is disclosed. In one aspect, the first and second power lines are coupled to the first and second voltages, and are supplied to the pixel unit via first and second power pads. In some aspects, the first and second power pads are alternately disposed while being spaced apart from each other in at least a portion of the peripheral area, and the second power pads are disposed in the space between the respective first power pads.