Abstract:
A display device includes pixels coupled to first scan lines, second scan lines, emission control lines, and data lines; a first scan driver to supply a scan signal to each of the first scan lines at a first frequency to drive the display device at a first driving frequency, and to supply the scan signal to each of the first scan lines at a second frequency to drive the display device at a second driving frequency lower than the first driving frequency; a second scan driver to supply a scan signal to each of the second scan lines at the first frequency to drive the display device at the first driving frequency, and to supply the scan signal to each of the second scan lines at the second frequency to drive the display device at the second driving frequency; an emission driver to supply an emission control signal to each of the emission control lines at the first frequency; and a data driver to supply a data signal to each of the data lines in response to the scan signal supplied to each of the first scan lines.
Abstract:
An organic light emitting display device includes pixels, a sensor configured to extract at least one of deviation information of first transistors of the pixels and deterioration information of OLEDs of the pixels in a sensing period, and a converter configured to change a bit of first data input from the outside by using at least one of the deviation information and the deterioration information, and to generate second data, wherein a pixel at an ith horizontal line includes an OLED, a first transistor configured to control an amount of a current that flows from a first power source via the OLED in response to a voltage of a first node, second and third transistors configured to turn on when a scan signal is supplied to an ith scan line, and a fourth transistor configured to turn on when a control signal is supplied to an ith control line.
Abstract:
A display device including a display panel including a display area including a fingerprint sensing area and a plurality of pixels provided in the fingerprint sensing area; a sensor layer provided on one surface of the display panel overlapping the fingerprint sensing area, the sensor layer including a plurality of photo sensors; a panel driving circuit configured to output a data signal corresponding to image data to the display panel, corresponding to a first mode, and to output a driving signal to the display panel to allow the pixels to emit lights in a form corresponding to a predetermined light pattern, corresponding to a second mode; and a fingerprint detecting circuit configured to receive sensing signals from the photo sensors, corresponding to the second mode, the fingerprint detecting circuit detecting a fingerprint of a user, based on a sensing signal corresponding to the light pattern among the received sensing signals.
Abstract:
An organic light-emitting display and a method of manufacturing an organic light-emitting display are described. According to an aspect, the organic light-emitting display includes a substrate, a photodiode on the substrate, a planarization layer covering the photodiode, a first electrode on the planarization layer, a pixel defining layer at least partially exposing the first electrode, an organic layer covering the first electrode which is exposed by the pixel defining layer and a second electrode covering the pixel defining layer and the organic layer.
Abstract:
A display device includes pixels coupled to first scan lines, second scan lines, emission control lines, and data lines; a first scan driver to supply a scan signal to each of the first scan lines at a first frequency to drive the display device at a first driving frequency, and to supply the scan signal to each of the first scan lines at a second frequency to drive the display device at a second driving frequency lower than the first driving frequency; a second scan driver to supply a scan signal to each of the second scan lines at the first frequency to drive the display device at the first driving frequency, and to supply the scan signal to each of the second scan lines at the second frequency to drive the display device at the second driving frequency; an emission driver to supply an emission control signal to each of the emission control lines at the first frequency; and a data driver to supply a data signal to each of the data lines in response to the scan signal supplied to each of the first scan lines.
Abstract:
A display device includes a power supply to supply a first initialization power source to the pixels through a first initialization and to supply a second initialization power source to the pixels through a second power line.
Abstract:
A gate driver includes first and second stages. Each of the first and second stages includes an output circuit which outputs a scan signal, a carry signal and an inverted carry signal based on voltages of first and second nodes, a first input terminal, a second input terminal, a third input terminal, a first output terminal, and a second output terminal. The first stage further includes a first input circuit which controls the voltages of the first and second nodes thereof based on a start pulse and a signal supplied to the second input terminal. The second stage further includes a second input circuit which controls the voltages of the first and second nodes thereof based on a first carry signal and a first inverted carry signal, and a signal supplied to the second input terminal. The second stage is dependently connected to the first stage.
Abstract:
A display device includes a display panel including gate lines and pixels connected to the gate lines, and a gate driver including plural stages providing gate signals to the gate lines. A first stage among the stages includes a node controller including an input terminal and configured to control a voltage of a first control node and a voltage of a second control node, and an output unit connected to a first gate power source line and configured to output a first gate power source voltage of the first gate power source line as a gate signal through an output terminal in response to the voltage of the first control node. The node controller includes a first auxiliary transistor connected in the form of a diode between the input terminal and the second control node and a boosting capacitor connected between the second control node and the output terminal.
Abstract:
A display device includes: a display panel including a pixel electrically connected to each of a data line, a first power line, a second power line, and a third power line; a power supply to provide a first power voltage to the first power line, and a second power voltage to the second power line; and a driver to provide a data voltage to the data line, and a third power voltage to the third power line. The driver is to determine whether a sensing voltage measured at the second power line is out of a reference range, and to limit the supply of the third power voltage when the sensing voltage is out of the reference range.
Abstract:
A display device including a display panel including a display area including a fingerprint sensing area and a plurality of pixels provided in the fingerprint sensing area; a sensor layer provided on one surface of the display panel overlapping the fingerprint sensing area, the sensor layer including a plurality of photo sensors; a panel driving circuit configured to output a data signal corresponding to image data to the display panel, corresponding to a first mode, and to output a driving signal to the display panel to allow the pixels to emit lights in a form corresponding to a predetermined light pattern, corresponding to a second mode; and a fingerprint detecting circuit configured to receive sensing signals from the photo sensors, corresponding to the second mode, the fingerprint detecting circuit detecting a fingerprint of a user, based on a sensing signal corresponding to the light pattern among the received sensing signals.