Abstract:
A display device including a display panel and an input sensor including detection electrodes overlapping an active area, and first trace lines connected to the detection electrodes, having a portion overlapping the active area, and including mesh lines overlapping the active area, having a portion extending in a first direction, and including a first row mesh line having a portion extending in the first direction, and a second row mesh line having a portion extending in the first direction, and spaced apart from the first row mesh line in a second direction, and a second portion electrically connected to the mesh lines, overlapping the peripheral area, extending in the second direction, and including a first column wiring connected to the first row mesh line and extending in the second direction, and a second column wiring connected to the second row mesh line and extending in the second direction.
Abstract:
A display substrate includes an insulating substrate, a first gate line, a first lower electrode, a second lower electrode, a first upper electrode, and a second upper electrode. The insulating substrate includes a first pixel region and a second pixel region located at a first direction from the first pixel region. The first gate line extends in a second direction crossing the first direction on the insulating substrate. The first and the second lower electrodes are in the first and the second pixel regions, respectively. The first upper electrode overlaps the first lower electrode in the first pixel region and includes a first slit pattern extending in a third direction different from the first and the second directions. The second upper electrode overlaps the second lower electrode in the second pixel region and includes a second slit pattern extending in a fourth direction different from the first to the third directions.
Abstract:
A method for manufacturing a quantum dot includes a method of manufacturing a quantum dot including heating a first mixture including a Group II precursor and a Group III precursor, adding an organic solvent to the first mixture and cooling the resultant under an inert gas atmosphere, adding a Group V precursor solution to the cooled resultant including the first mixture and the organic solvent to prepare a second mixture and heating the second mixture, and adding a mixture of a Group V precursor and a Group VI precursor to the second mixture to prepare a third mixture and allowing third mixture to react.
Abstract:
A liquid crystal display (LCD) panel is disclosed. The LCD panel includes a plurality of pixels arranged in rows and columns, a first sub gate-line coupled to first row-pixels that are adjacent to a lower side of the first sub gate-line, a second sub gate-line coupled to second row-pixels that are adjacent to an upper side of the second sub gate-line, a plurality of gate-lines between the first sub gate-line and the second sub gate-line, a plurality of even data-lines coupled to first column-pixels that are adjacent to the even data-lines, and a plurality of odd data-lines coupled to second column-pixels that are adjacent to the odd data-lines. Here, each gate-line of the plurality of gate lines is coupled to first row-pixels that are adjacent to a lower side of the gate-line and second row-pixels that are adjacent to an upper side of the gate-line.
Abstract:
A light emitting diode package includes a light emitting diode, an insulating layer, a plurality of light emitting particles, and a plurality of metal particles. The light emitting diode is configured to emit first light of a first wavelength in a visible light range. The insulating layer is disposed on the light emitting diode. The plurality of light emitting particles is dispersed in the insulating layer and is configured to receive the first light to generate a second light of a second wavelength different from the first wavelength. The plurality of metal particles is dispersed in the insulating layer, and is configured to receive at least one light component of the first light and the second light to cause, at least in part, surface plasmon resonance, the surface plasmon resonance being configured to yield a resonance wave comprising a peak wavelength in the range of the second wavelength.
Abstract:
A display device includes a display panel and an input sensor. The input sensor may include a first sensing electrode, a signal line electrically connected to a first terminal of the first sensing electrode, a first line at least partially overlapping the first sensing electrode and extending in the same direction as the first sensing electrode in the active area, and a first switching element defining a first current path in the first sensing electrode and the first line or blocking the first current path.
Abstract:
Embodiments provide an emissive display device including a driving transistor including a first electrode, a second electrode, and a driving gate electrode, a second transistor including a first electrode electrically connected to a data line, a transfer capacitor including a first transfer electrode electrically connected to a second electrode of the second transistor and a second transfer electrode electrically connected to the driving gate electrode; a fifth transistor electrically connecting the first electrode of the driving transistor and the driving gate electrode; a ninth transistor including a second electrode electrically connected to the second electrode of the driving transistor; and a light emitting diode including an anode and a cathode receiving an output current outputted to the second electrode of the driving transistor.
Abstract:
A touch sensing apparatus including: a touch panel including a first electrode and a second electrode; a driver configured to apply a driving signal to the first electrode; a touch sensor configured to receive a signal transferred depending on the driving signal from the second electrode, and to convert and output the signal as a sensing signal; and a touch controller configured to detect the sensing signal. The touch panel further includes a third electrode and a fourth electrode which transfer noise signals having different magnitudes to the touch sensor, and the touch sensor outputs the sensing signal by using a difference in the noise signals and the signal.
Abstract:
A backlight assembly includes a first light source part including a plurality of first light sources configured to generate light having a first color and a plurality of second light sources configured to generate light having a second color different from the first color, and a light guiding plate including a first incident surface and an exiting surface adjacent to the first incident surface. The exiting surface is configured to allow the light to pass therethrough. The exiting surface includes a first peripheral portion configured to absorb the light having the second color and a central portion adjacent to the first peripheral portion and configured to allow the light to pass therethrough. The first and second light sources are alternately located.
Abstract:
A backlight assembly includes a plurality of first light sources configured to emit a first color, and a plurality of second light sources configured to emit a second color different from the first color, where the backlight assembly is divided in a first boundary area, a second boundary area spaced apart from the first boundary area in a first direction, and a middle area between the first boundary area and the second boundary area, and an arrangement direction of first and second light sources of the plurality of first and second light sources in the first and second boundary areas is different from an arrangement direction of first and second light sources of the plurality of first and second light sources in the middle area.