Method and system for disease quantification of anatomical structures

    公开(公告)号:US12119117B2

    公开(公告)日:2024-10-15

    申请号:US17726307

    申请日:2022-04-21

    Abstract: This disclosure discloses a method and system for predicting disease quantification parameters for an anatomical structure. The method includes extracting a centerline structure based on a medical image. The method further includes predicting the disease quantification parameter for each sampling point on the extracted centerline structure by using a GNN, with each node corresponds to a sampling point on the extracted centerline structure and each edge corresponds to a spatial constraint relationship between the sampling points. For each node, a local feature is extracted based on the image patch for the corresponding sampling point by using a local feature encoder, and a global feature is extracted by using a global feature encoder based on a set of image patches for a set of sampling points, which include the corresponding sampling point and have a spatial constraint relationship defined by the centerline structure. Then, an embed feature is obtained based on both the local feature and the global feature and input into to the node. The method is able to integrate local and global consideration factors of the sampling points into the GNN to improve the prediction accuracy.

    Method and system for anatomical labels generation

    公开(公告)号:US12094596B2

    公开(公告)日:2024-09-17

    申请号:US17726039

    申请日:2022-04-21

    CPC classification number: G16H30/40 G06N3/045 G06V10/82 G06V20/70

    Abstract: The present disclosure relates to a method and a system for generating anatomical labels of an anatomical structure. The method includes receiving an anatomical structure with an extracted centerline, or a medical image containing the anatomical structure with the extracted centerline; and predicting the anatomical labels of the anatomical structure based on the centerline of the anatomical structure, by utilizing a trained deep learning network. The deep learning network includes a branched network, a Graph Neural Network, a Recurrent Neural Network and a Probability Graph Model, which are connected sequentially in series. The branched network includes at least two branch networks in parallel. The method in the disclosure can automatically generate the anatomical labels of the whole anatomical structure in medical image end to end and provide high prediction accuracy and reliability.

    METHOD AND SYSTEM FOR GENERATING A CENTERLINE FOR AN OBJECT, AND COMPUTER READABLE MEDIUM

    公开(公告)号:US20200311485A1

    公开(公告)日:2020-10-01

    申请号:US16827613

    申请日:2020-03-23

    Abstract: Methods and Systems for generating a centerline for an object in an image and computer readable medium are provided. The method includes receiving an image containing the object. The method also includes generating the centerline of the object by tracing a sequence of patches with a virtual agent. For each patch other than the initial patch, the method determines a current patch based on the position and action of the virtual agent at a previous patch. The method further determines a policy function and a value function based on the current patch using a trained learning network, which includes an encoder followed by a first learning network and a second learning network. The learning network is trained by maximizing a cumulative reward. The method also determines the action of the virtual agent at the current patch. Additionally, the method displays the centerline of the object.

    SYSTEM AND METHOD FOR TRAINING MACHINE LEARNING MODELS WITH UNLABELED OR WEAKLY-LABELED DATA AND APPLYING THE SAME FOR PHYSIOLOGICAL ANALYSIS

    公开(公告)号:US20220215958A1

    公开(公告)日:2022-07-07

    申请号:US17568084

    申请日:2022-01-04

    Abstract: The present disclosure relates to training methods for a machine learning model for physiological analysis. The training method may include receiving training data including a first dataset of labeled data of a physiological-related parameter and a second dataset of weakly-labeled data of the physiological-related parameter. The training method further includes training, by at least one processor, an initial machine learning model using the first dataset, and applying, by the at least one processor, the initial machine learning model to the second dataset to generate a third dataset of pseudo-labeled data of the physiological-related parameter. The training method also includes training, by the at least one processor, the machine learning model based on the first dataset and the third dataset, and providing the trained machine learning model for predicting the physiological-related parameter. Thereby, the weakly-labeled dataset may be sufficiently utilized in training of the machine learning model and improve ts p iformance.

Patent Agency Ranking