Abstract:
A global positioning system (GPS) and Doppler augmentation (GDAUG) end receiver (GDER) can include a GDAUG module. The GDAUG module can generate a GDER position using a time of flight (TOF) of a transponded GPS signal and a Doppler shift in a GDAUG satellite (GSAT) signal. The transponded GPS signal sent from a GSAT to the GDER can include a frequency shifted copy of a GPS signal from a GPS satellite to the GSAT. The GSAT signal can include a signal generated by the GSAT to the GDER.
Abstract:
Method for capturing a high dynamic range signal includes: receiving the wideband analog signal; digitizing the wideband signal by a wideband ADC; detecting N strongest sub-bands in the digitized wideband analog signal; adaptively programming N bandstop filters to block the detected N strongest sub-bands from being digitized by the wideband ADC; adjusting a gain of output signals of the N bandstop filters to amplify said output signals; digitizing the amplified output signals by the wideband ADC to obtain a first digitized signal; adaptively programming N passband filters to pass the detected N strongest sub-bands to N ADCs, respectively; digitizing the detected strongest N sub-band signals output from the N pass-band filters by the respective N ADCs to obtain a plurality of second digitized signals; and processing the first digitized signal and the plurality of second digitized signals to identify any duplicate bands.
Abstract:
An imaging transform spectrometer, and method of operation thereof, that is dynamically configurable “on demand” between an interferometric spectrometer function and a broadband spatial imaging function to allow a single instrument to capture both broadband spatial imagery and spectral data of a scene. In one example, the imaging transform spectrometer is configured such that the modulation used for interferometric imaging may be dynamically turned ON and OFF to select a desired mode of operation for the instrument.
Abstract:
Computer implemented methods for compressing 3D hyperspectral image data having a plurality of spatial pixels associated with a hyperspectral image, and a number of spectral dimensions associated with each spatial pixel, include receiving, using a processor, the 3D hyperspectral image data, a set of basis vectors associated therewith, and either a maximum error amount or a maximum data size. The methods also include partitioning the 3D hyperspectral image data into a plurality of 2D images, each associated with one of the number of spectral dimensions, and an associated one of the set of basis vectors. The methods additionally include ranking the set of basis vectors if not already ranked. The methods may further include iteratively applying lossy compression to the 2D images, in an order determined by the ranking. Other embodiments and features are also disclosed.
Abstract:
An imaging platform minimizes image distortion when there is relative motion of the imaging platform with respect to the scene being imaged where the imaging platform may be particularly susceptible to distortion when it is configured with a wide field of view or high angular rate of movement, or when performing long-stares at a given scene (e.g., for nighttime and low-light imaging.) Distortion correction may be performed by predicting distortion due to the relative motion of the imaging platform, determining optical transformations to prevent the distortion, dynamically adjusting the optics of the imaging platform during exposure, and performing digital image correction.
Abstract:
A method for reducing dimensionality of hyperspectral images includes receiving a hyperspectral image having a plurality of pixels. The method may further include establishing an orthonormal basis vector set comprising a plurality of mutually orthogonal normalized members. Each of the mutually orthogonal normalized members may be associated with one of the plurality of pixels of the hyperspectral image. The method may further include decomposing the hyperspectral image into a reduced dimensionality image, utilizing calculations performed while establishing said orthonormal basis vector set. A system configured to perform the method may also be provided.
Abstract:
A LADAR system includes a transmitter configured to emit a directed optical signal. The LADAR system includes an optical aperture through which the directed optical signal is emitted. The optical aperture receives a return optical signal that is based on the directed optical signal. The system includes a detector to generate a measurement by comparing an attribute of the return optical signal to a predefined threshold. The measurement is based on an amount of backscatter in the return optical signal. The system includes an obstructive element that is controllable, based on the measurement, to move either into or out of a path of the return optical signal. The obstructive element is configured to block the return optical signal at least partly. The system includes a focal plane located in the path of the return optical signal. The obstructive element is disposed between the optical aperture and the focal plane.
Abstract:
A LADAR system includes a transmitter configured to emit a directed optical signal. The LADAR system includes an optical aperture through which the directed optical signal is emitted. The optical aperture receives a return optical signal that is based on the directed optical signal. The system includes a detector to generate a measurement by comparing an attribute of the return optical signal to a predefined threshold. The measurement is based on an amount of backscatter in the return optical signal. The system includes an obstructive element that is controllable, based on the measurement, to move either into or out of a path of the return optical signal. The obstructive element is configured to block the return optical signal at least partly. The system includes a focal plane located in the path of the return optical signal. The obstructive element is disposed between the optical aperture and the focal plane.
Abstract:
Technology for determining a geographical location of a ground receiver is disclosed. A plurality of radio frequency (RF) signals from a plurality of RF signal carriers may be received at the ground receiver. The plurality of RF signal carriers may include satellites operated by a foreign entity or non-global positioning system (non-GPS) satellites. The ground receiver may measure a Doppler shift associated with each of the plurality of RF signals. The geographical location of the ground receiver may be determined in X, Y and Z coordinates based in part on the Doppler shift associated with each of the plurality of RF signals.
Abstract:
A system is provided that includes multiple analog-to-digital converters (ADCs), multiple antennas, and one or more processors. The one or more processors are configured, in a first mode of operation, to receive from the multiple ADCs samples of emissions received by one of the antennas and identify a signal of interest. The one or more processors are configured, in a second mode of operation, receive from the multiple ADCs samples of emissions received by the multiple antennas and identify an angle of arrival for the signal of interest.