Abstract:
A coupler for separable physically coupling together a pair of objects includes two parts, on opposite sides of a boundary, that have different piezoelectric characteristics. When an electric field is applied to the coupler parts the piezoelectric forces induce a mechanical stress that separates the parts. The parts may be made of the same or a similar material, such as a suitable ceramic material, with the different piezoelectric characteristics produced by templating the parts with different domain orientations, from different seeds, for example using a three-dimensional manufacturing processes. The coupler may be used to allow shock-free (or reduced shock) separation of parts, such as separation of stages of vehicles such as flight vehicles.
Abstract:
Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.
Abstract:
Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.
Abstract:
Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.
Abstract:
A method for forming an optical window. In one example, the method includes depositing a layer of eutectic bonding material onto a first surface of a first section of window material, positioning a second surface of a second section of window material onto the layer of eutectic bonding material such that the first surface is disposed opposite the second surface, and heating the eutectic bonding material to a temperature above a eutectic temperature of the eutectic bonding material and below a melting temperature of the window material for a predetermined length of time to form an optical window. The window material of the first section and the second section may be transparent to infrared radiation and comprise aluminum.
Abstract:
Systems and method for forming a nanocomposite material. One example of a nanocomposite material includes a first sulfur-based nanoparticle material defining a first nanophase and a second sulfur-based nanoparticle material defining a second nanophase, wherein the nanocomposite material is at least partially long-wave infrared (LWIR) transmitting, and the first nanophase and the second nanophase are co-dispersed to form interpenetrating networks with one another and each has a grain structure that is distinct from one another.