Abstract:
In the present technique of streaming a main media stream that has been requested, an anti-shadow stream (36) that represents a backup copy of the main media stream (24) is sent along with an output media stream (34) that represents an output copy of the main media stream. The content of the anti-shadow stream (36) is preferably forward-shifted in time from the output media stream (34) so as to provide replacement of loss data of the output stream. Put differently, sequenced data frames of the output stream (34) are delayed by order compared to that of the anti-shadow stream (36).
Abstract:
The present invention provides a method for evaluating a communication link between a first communication site and a second communication site. The first and second communication sites increment a sent counter and reset a received counter upon sending a message to the other communication site. Each communication site also increments a received counter and reset a sent counter upon receiving a message from the other communication site. When the sent counter exceeds a sent threshold, the communication system site sends an alert that the communication link is down. When the received counter exceeds a predetermined percentage of the other communication site's sent counter, the site sends a message to the other communication site to let the other communication system site know that it is still receiving messages.
Abstract:
Various embodiments are described to enable improved inter-network/inter-technology handover of mobile devices. A network device (131, 132) collects dynamic information corresponding to mobile devices (101, 102), such as wireless measurement information at the device's location, and/or information corresponding to wireless network nodes (121-124), such loading levels/loading distributions. The network device then sends some or all of the dynamic information collected and/or statistical information generated from the dynamic information collected to a neighboring network information server (150) for access by other communication networks. By maintaining dynamic and/or statistical information in a neighboring network information server, such information can be made available to all the communication networks in a given region. One potential benefit to making this information available is improved inter-network handoff decision-making.
Abstract:
In a wireless code-division multiple access (CDMA) system (100), a talkgroup (101) of subscriber units is provided. A sub-talkgroup (102) of subscriber units, forming a part of the talkgroup is assigned at least one inbound channel (416-417). The talkgroup is assigned outbound channels (415). Members of the sub-talkgroup may simultaneously transmit voice information (410-411) using the at least one inbound channel, which voice information is summed (412) and re-transmitted to the talkgroup using the outbound channels. Voice information is summed so that an individual talker receives summed voice information without the individual subscriber's voice content. Subscriber units in the sub-listengroup are allowed to transmit voice information only after requesting, and receiving, an additional inbound channel.
Abstract:
In the present technique of streaming a main media stream that has been requested, an anti-shadow stream (36) that represents a backup copy of the main media stream (24) is sent along with an output media stream (34) that represents an output copy of the main media stream. The content of the anti-shadow stream (36) is preferably forward-shifted in time from the output media stream (34) so as to provide replacement of loss data of the output stream. Put differently, sequenced data frames of the output stream (34) are delayed by order compared to that of the anti-shadow stream (36).
Abstract:
An apparatus and method for throttling server communications in a communication network. Firstly, priorities are defined by a watcher for particular status events. These priorities are then mapped to a list of status events in an event filter. In response to a change of status event of a presentity, the status event is compared to the list of status events of the event filter. If the comparable status event has an associated higher priority, a notification is sent of the change of status event to the watcher with substantially no delay. If the comparable status notification event has an associated lower priority, the status event is filtered in the event filter, and sent to the watcher, as needed, during a predetermined interval. A unique priority code can be defined for events and/or a maximum delay for sending a notification of an event change can be defined for events.
Abstract:
A communication network (100) includes a first server (124) and a second server, such as any of the servers (121-23), connected via a common network (101). First server (124) owns a record data (180) associated with at least one process running for serving a client device (174.) The second server keeps a copy of the record data. First server (124) performs a Hashing function over record data (180) to produce a first Hash value. The second server similarly performs the same or similar Hashing function over the copy of the record data to produce a second Hash value. First server (124) sends the first Hash value to the second server for comparison. If the first Hash value fails to match to the second Hash value, a latest copy of the record data (180) is sent from first server (124) to the second server upon request.
Abstract:
A method of switching a call to a multipoint conference call includes sending a message (201) from a first terminal (105-T1) to a gatekeeper (102) which provides address translation and control access to a shared network medium (101). The call is initially established as a point to point communication between first terminal (101) and a second terminal (105-TN) over shared network medium (101) while complying with H.323 standard. Message (201) contains a request for the multipoint conference call. The method furthermore includes selecting a multipoint control unit (104) connected to shared network medium (101) to allocate resources for the multipoint conference call, and then switching the call to the multipoint conference call via the allocated resources. Thereby, the initial call is switched to a multipoint conference call without interrupting the initial call.
Abstract:
Various embodiments are described to enable improved inter-network/inter-technology handover of mobile devices. A network device (131, 132) collects dynamic information corresponding to mobile devices (101, 102), such as wireless measurement information at the device's location, and/or information corresponding to wireless network nodes (121-124), such loading levels/loading distributions. The network device then sends some or all of the dynamic information collected and/or statistical information generated from the dynamic information collected to a neighboring network information server (150) for access by other communication networks. By maintaining dynamic and/or statistical information in a neighboring network information server, such information can be made available to all the communication networks in a given region. One potential benefit to making this information available is improved inter-network handoff decision-making.
Abstract:
A thin client wireless communication device and method and server for providing services to a thin client wireless communication device are disclosed. The method includes receiving, from at least one thin client device, at least one request for a service. A user profile of a current user of the thin client device is determined by an information processing system remotely located from the thin client device. A partition in a memory for at least partially performing the requested service is updated by the information processing system. The method also includes providing the requested service to the thin client device via a wireless communication channel. The requested service is provided to the thin client device based at least in part on the determined user profile associated with the thin client device.