Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects described herein relate to communicating feedback in wireless communications. A user equipment (UE) can receive, in a downlink portion of a slot, data communications from a base station, where the data communications comprise multiple code blocks received in one or more downlink symbols. The UE can generate one or more feedback bits to provide feedback for the multiple code blocks. The UE can transmit, to the base station and in an uplink portion of the slot, an indication of the one or more feedback bits.
Abstract:
Aspects described herein relate to communicating feedback in wireless communications. A user equipment (UE) can receive, in a downlink portion of a slot, data communications from a base station, where the data communications comprise multiple code blocks received in one or more downlink symbols. The UE can generate one or more feedback bits to provide feedback for the multiple code blocks. The UE can transmit, to the base station and in an uplink portion of the slot, an indication of the one or more feedback bits.
Abstract:
The present disclosure provides techniques for performing bit-level interleaving for orthogonal frequency-divisional multiplexing (OFDM) symbols across a plurality of code blocks. In some aspects, a transmitting device may dynamically switch between bit-level interleaving and tone-level interleaving for each OFDM symbol based on factors such as number of bits that are carried in each tone, size of each code block, the processing time requirements of the transmitting device and/or the receiving device, or the transmitting device preference.
Abstract:
Aspects of the present disclosure provide apparatuses, methods, and processes that can determine the number of concurrent hybrid automatic repeat request (HARQ) processes at a HARQ entity to facilitate efficient use of HARQ buffers and/or resources across different operating modes. An exemplary apparatus is configured to determine a number of HARQ processes based on a number of HARQ buffers, a maximum buffering time, and a slot duration. The apparatus maintains one or more HARQ processes at a HARQ entity up to the determined number of HAR processes and communicate with the one or more other devices utilizing the one or more HARQ processes.
Abstract:
Aspects of the present disclosure provide apparatuses, methods, and processes that can determine the number of concurrent hybrid automatic repeat request (HARQ) processes at a HARQ entity to facilitate efficient use of HARQ buffers and/or resources across different operating modes. An exemplary apparatus is configured to determine a number of HARQ processes based on a number of HARQ buffers, a maximum buffering time, and a slot duration. The apparatus maintains one or more HARQ processes at a HARQ entity up to the determined number of HAR processes and communicate with the one or more other devices utilizing the one or more HARQ processes.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized for a variety of purposes including, for example, enabling the multiplexing of two or more data transmission formats. In another example, the thin control channel can be utilized to carry control information that relates to interference experienced by a user. By utilizing this control information on a thin control channel, the network can take suitable action to mitigate the interference. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.