Abstract:
The present disclosure presents a method and apparatus for identifying an access point (AP) for selection by an access terminal (AT). For example, the method may include receiving a probe request by one or more APs from an AT, wherein the probe request is broadcasted by the AT to the one or more APs, generating load information and Received Signal Strength Indicator (RSSI) values of the probe request at the one or more APs, identifying an AP of the one or more APs for selection by the AT, wherein the AP for selection by the AT is identified by the one or more APs based at least on the load information and RSSI values generated at the one or more APs, and transmitting information of an AP identified by the one or more APs to the AT. As such, an improved mechanism for selecting an access point may be achieved.
Abstract:
Techniques for setting transmission parameters in a shared communication medium are disclosed. A communication method in accordance with the present disclosure may include, for example, receiving in accordance with a first RAT a first management frame indicating a first BSSID and a second management frame indicating a second BSSID different from the first BSSID, calculating a timestamp difference between a first management frame timestamp included in the first management frame and a second management frame timestamp included in the second management frame, the first BSSID and the second BSSID to a first grouping associated with a first physical access point based on the timestamp difference, and selecting one or more operating channels or setting one or more parameters of a DTX communication pattern based on the assigning, the DTX communication pattern defining activated periods and deactivated periods of communication.
Abstract:
Techniques for setting transmission parameters in shared spectrum and related operations are disclosed. A communication method may include operating in accordance with a primary RAT over an operating channel and in accordance with a DTX communication pattern, the DTX communication pattern defining activated periods and deactivated periods of primary-RAT transmission over the operating channel, monitoring secondary-RAT signaling on a shared channel of the secondary RAT that at least partially overlaps in frequency space with the operating channel of the primary RAT, determining a channel type associated with the shared channel, and setting one or more parameters of the DTX communication pattern based on the channel type associated with the shared channel.
Abstract:
Techniques for managing operation over a communication medium shared between Radio Access Technologies (RATs) are disclosed. In one example, one or more parameters of a Time Division Multiplexed (TDM) communication pattern may be set based on a utilization metric and a beacon schedule. In another example, subframe puncturing on the medium may be scheduled based on the beacon schedule.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
Abstract:
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
Abstract:
Techniques for co-existence between wireless Radio Access Technologies (RATs) and related operations in shared spectrum are disclosed. Operation on a communication medium shared between RATs may be managed by a transceiver configured to operate in accordance with a first RAT and to monitor the medium for signaling associated with a second RAT. A medium analyzer may be configured to determine one or more Time Division Multiplexing (TDM) parameters of a TDM communication pattern associated with the second RAT based on the monitored signaling. A transmission controller may be configured to set one or more transmission parameters for the first RAT based on the determined one or more TDM parameters. The transceiver may be further configured to transmit on the medium in accordance with the one or more transmission parameters.
Abstract:
Techniques for co-existence on a shared communication medium are disclosed. In one example, transmission in accordance with a first Radio Access Technology (RAT) may be punctured on one or more active periods of a Discontinuous Transmission (DTX) communication pattern based on monitoring of signaling associated with a second RAT. In addition or as an alternative, a transmission power level of an access point for transmission in accordance with a first RAT may be reduced based on one or more signal timing characteristics of signaling associated with a second RAT.
Abstract:
Techniques for channel selection and related operations in a shared spectrum environment are disclosed. In one example, a channel selector or the like may be used to select one of a number of available channels as an operating channel based on a comparison of cost functions for each of the available channels, with the cost functions being based on separate utility and penalty metrics. In another example, a channel scanner or the like may be used to trigger a channel scan in response to a channel quality metric indicating poor service for a threshold number or proportion of access terminals. In another example, an operating mode controller may be used to trigger a Time Division Multiplexing (TDM) mode on an operating channel in response to a utilization metric being above a threshold. The TDM mode may cycle operation between activated and deactivated periods in accordance with a TDM communication pattern.