Abstract:
Embodiments include systems and methods that may be performed by a processor of a computing device. Embodiments may be applied for keypoint detection in an image. In embodiments, the processor of the computing device may apply to an image a first-stage neural network to define and output a plurality of regions, apply to each of the plurality of regions a respective second-stage neural network to output a plurality of keypoints in each of the plurality of regions, and apply to the plurality of keypoints a third-stage neural network to determine a correction for each of the plurality of keypoints to provide corrected keypoints.
Abstract:
A method is presented. The method includes determining a number of landmarks in an image comprising multiple pixels. The method also includes determining a number of channels for the image based on a function of the number of landmarks. The method further includes determining, for each one of the number of channels, a confidence of each pixel of the multiple pixels corresponding to a landmark. The method still further includes identifying the landmark in the image based on the confidence.
Abstract:
A method performed by an electronic device is described. The method includes performing vertical processing of a depth map to determine a vertical non-obstacle estimation. The method also includes performing horizontal processing of the depth map to determine a horizontal non-obstacle estimation. The method further includes combining the vertical non-obstacle estimation and the horizontal non-obstacle estimation. The method additionally includes generating a non-obstacle map based on the combination of the vertical and horizontal non-obstacle estimations.
Abstract:
Method and apparatus for reducing random noise in digital video streams are described. In one innovative aspect, the device includes a noise estimator. The device also includes a motion detector configured to determine a motion value indicative of motion between two frames of the video stream, the motion value based at least in part on the noise value. The device further includes a spatial noise reducer configured to filter the image data based at least in part on a blending factor and the noise value. The device also includes a temporal noise reducer configured to filter the video data based on the motion value and the noise value. The device also includes a blender configured to blend the spatial and temporal filtered values to provide a weighted composite filtered output image.
Abstract:
Method and apparatus for reducing random noise in digital video streams are described. In one innovative aspect, the device includes a noise estimator. The device also includes a motion detector configured to determine a motion value indicative of motion between two frames of the video stream, the motion value based at least in part on the noise value. The device further includes a spatial noise reducer configured to filter the image data based at least in part on a blending factor and the noise value. The device also includes a temporal noise reducer configured to filter the video data based on the motion value and the noise value. The device also includes a blender configured to blend the spatial and temporal filtered values to provide a weighted composite filtered output image.