Abstract:
Methods, systems, and devices for wireless communications are described. A first node of an integrated access and backhaul (IAB) network may identify a second, neighboring non-parent node of the IAB network. The second node may be associated with a timing source which may provide more accurate timing information than the parent node of the first node. The first node may transmit a first random access message to the second node to initiate a random access procedure. The second node may transmit a second random access message to the first node, the second random access message including timing information based on the timing source. The first and second nodes may terminate the random access procedure based at least in part on receiving the second random access message.
Abstract:
A system for transmitter DC offset compensation is operable by a network entity that communicates with at least one other network entity. The network entity determines a quality indicator for the at least one other network entity and adjusts a mixer bias voltage. The network entity observes for changes in the quality indicator and readjusts the mixer bias voltage based on the changes in the quality indicator to improve the quality indicator. The network entity continues to observe for changes in the quality indicator and continues to readjust the mixer bias voltage until the quality indicator is optimized.
Abstract:
An apparatus is disclosed for passive intermodulation distortion filtering. The apparatus includes a radio-frequency front-end circuit. The radio-frequency front-end circuit includes a transmit filter circuit and a receive filter circuit. The transmit filter circuit includes a passive circuit configured to combine at least two radio-frequency transmit signals associated with different transmit frequency bands. The transmit filter circuit also includes a filter coupled between the passive circuit and a first feed of an antenna. The filter is configured to attenuate frequencies associated with a receive frequency band. The receive filter circuit is coupled to a second feed of the antenna and is configured to pass the frequencies associated with the receive frequency band.
Abstract:
Methods, systems, and devices for wireless communications are described. A first node of an integrated access and backhaul (IAB) network may identify a second, neighboring non-parent node of the TAB network. The second node may be associated with a timing source which may provide more accurate timing information than the parent node of the first node. The first node may transmit a first random access message to the second node to initiate a random access procedure. The second node may transmit a second random access message to the first node, the second random access message including timing information based on the timing source. The first and second nodes may terminate the random access procedure based at least in part on receiving the second random access message.
Abstract:
In one or more access points of a wireless communication network, a method for participating in a distributed clustering process directed at defining clusters of access points wherein each of the clusters comprises a cluster head and associated member nodes includes determining a marginal cost of associating an access point to each of distinct clusters of access points, based on a defined cost function, and associating the access point to one of the clusters of APs for which the marginal cost is minimized. The method may be performed by multiple access points in a peer-to-peer fashion and iterated until a stable cluster configuration is obtained. A cluster head may similarly be appointed in a distributed fashion by a current cluster head comparing total cost functions between different cluster configurations with different cluster heads.
Abstract:
A method, an apparatus, and a computer program product for providing full duplex (FD) wireless communication to an FD capable (FDC) user equipment (UE) among one or more UEs include determining allocations of one or more resource blocks (RBs) to the one or more UEs, determining FD capabilities and scheduling parameters of the one or more UEs, determining at least one FD portion and at least one half duplex (HD) portion in the one or more RBs based on the FD capabilities and the scheduling parameters of the one or more UEs, wherein a concurrent downlink (DL) and uplink (UL) communication is scheduled in the at least one FD portion, and adjusting the allocations of the one or more RBs based on the at least one FD portion and the at least one HD portion.