Abstract:
Methods, systems, computer-readable media, and apparatuses for to managing use of a satellite positions system (SPS) receiver in conjunction with one or more radio access technology (RAT) transmitters. In certain embodiments, a controller can be used to prioritize reception by the SPS receiver over transmission by the one or more RAT transmitters.
Abstract:
A signal transfer method includes: transferring a direct current signal between a port of an apparatus and a physical transmission line physically coupled to the port; and transferring: a first signal in accordance with a first wireless protocol to the port from a wireless protocol interface, the first signal being a first radio frequency signal; or a second signal in accordance with a second wireless protocol from the port to the wireless protocol interface, the second signal being a second radio frequency signal; or a combination thereof.
Abstract:
In an embodiment, a UE receives a first uplink grant for a first RAT (e.g., 5G NR) and a second uplink grant for a second RAT (e.g., LTE). In one embodiment, the UE schedules an uplink transmission on the first RAT (e.g., by selectively dropping the uplink transmission on particular resource blocks) so as to manage an amount of time that is based on concurrent uplink transmissions on both the first and second RATs are performed. In another embodiment, the UE establishes a first period of time where a BSR transmitted by the UE on the first RAT is adjusted based on scheduling of concurrent uplink multi-RAT transmissions, and a second period of time where no BSR is transmitted by the UE on the first RAT based where concurrent uplink transmissions on both the first and second RATs are not permitted to be scheduled.
Abstract:
Methods, systems, computer-readable media, and apparatuses for to managing use of a satellite positions system (SPS) receiver in conjunction with one or more radio access technology (RAT) transmitters. In certain embodiments, a controller can be used to prioritize reception by the SPS receiver over transmission by the one or more RAT transmitters.
Abstract:
Methods, systems, computer-readable media, and apparatuses for to managing use of a satellite positions system (SPS) receiver in conjunction with one or more radio access technology (RAT) transmitters. In certain embodiments, a controller can be used to prioritize reception by the SPS receiver over transmission by the one or more RAT transmitters.
Abstract:
Methods and circuits can down convert at least a first RF signal on a first path in a first frequency band to provide a first IF signal. A second RF signal on second path in a second frequency band can be down converted to provide a second IF signal. The first IF signal and the second IF signal are interspersed in the frequency domain, and the first frequency band is different from the second frequency band. A combiner can combine at least part of the first IF signal and the second IF signal to provide a combined signal on an output signal path for reception by a digital processing circuit. The first IF signal or second IF signal can be a Zero IF (ZIF), very low IF (VLIF), or Low IF (LIF) signal.
Abstract:
A wireless communication device configured for receiving multiple signals is described. The wireless communication device includes a single-chip carrier aggregation receiver architecture. The single-chip carrier aggregation receiver architecture includes a first antenna, a second antenna, a third antenna, a fourth antenna and a transceiver chip. The transceiver chip includes multiple carrier aggregation receivers. The single-chip carrier aggregation receiver architecture reuses at least one of the carrier aggregation receivers for secondary diversity.
Abstract:
A global navigation satellite system (GNSS) receiver includes at least one GNSS antenna configured to receive input signaling from at least a first GNSS source and a second GNSS source; an in-phase/quadrature (I/Q) mixer coupled to the at least one GNSS antenna and configured to process the input signaling to obtain complex intermediate signaling; a first complex filter coupled to the I/Q mixer and configured to filter the complex intermediate signaling with respect to a first frequency range to obtain first real output signaling; a second complex filter coupled to the I/Q mixer and configured to filter the complex intermediate signaling with respect to a second frequency range to obtain second real output signaling; and a signal combiner coupled to the first and second complex filters and configured to generate combined real output signaling by combining the first real output signaling and the second real output signaling.
Abstract:
An RFIC configuration for reduced antenna trace loss is disclosed. In an exemplary embodiment, an apparatus includes a primary RFIC and a secondary RFIC that is configured to receive analog signals from at least two antennas. The secondary RFIC is configured to process selected analog signals received from at least one antenna to generate an analog output that is input to the primary RFIC.
Abstract:
A mobile device may be configured to perform concurrent Satellite Positioning System (SPS) operation and wireless communications when uplink signals transmitted by the mobile device interferes with the reception of SPS signals in one or more frequency bands. The mobile device may determine if the SPS receiver has already acquired SPS signals and is in a tracking state. If the SPS receiver is not in a tracking state, an SPS acquisition procedure is initiated before the wireless communication session is initiated. The SPS acquisition procedure is performed until the SPS receiver reaches a tracking state, or until a timeout is reached. Once the SPS receiver is in a tracking state, the wireless communication session may be initiated, during which the SPS receiver is controlled, e.g., to perform signal blanking, measurement exclusion, or disable SPS reception, to mitigate interference with SPS signals.