Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for analyzing management frames for multiple basic service sets (BSSs). In one aspect, a wireless node may obtain a first management frame from a wireless local area network (WLAN) apparatus, the WLAN apparatus operating multiple virtual access points (VAPs) respectively corresponding to multiple BSSs. The wireless node may determine whether the first management frame includes a BSS profile of a BSS associated with the wireless node based, at least in part, on an arrangement of a plurality of BSS profiles within one or more management frames. The wireless node may determine to further process the first management frame based, at least in part, on a determination that the first management frame includes the BSS profile of the BSS associated with the wireless node.
Abstract:
An access point (AP) may prioritize the allocation of uplink resources between multiple basic service sets (BSSs). In some aspects, the AP may select one of a plurality of BSSs, may allocate one or more random-access resource units (RUs) to only the selected BSS, and may transmit, for each of the selected BSSs, a respective frame indicating the random-access RUs allocated to that BSS. Wireless devices belonging to the selected BSS may contend for access to the random-access RUs allocated by the frame, and then transmit uplink data using the random-access RUs.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for implementing a hybrid automatic repeat request (HARQ) protocol in a wireless local area network (WLAN). A first WLAN device may generate a first HARQ packet for transmission to a second WLAN device. The first WLAN device may determine a first basic service set (BSS) indicator and a second BSS indicator for a BSS associated with the first WLAN device and the second WLAN device. The first BSS indicator and the second BSS indicator may be indicative of a BSS identifier (BSSID) of the BSS. The first WLAN device may output the first HARQ packet for transmission to the second WLAN device. The first HARQ packet may include the first BSS indicator and the second BSS indicator in one or more fields of a physical layer (PHY) header of the first HARQ packet.
Abstract:
Methods, systems, and devices for wireless communication are described. An access point (AP) may win access to an unlicensed frequency channel for a transmission opportunity. For the transmission opportunity, the AP may dynamically schedule a duration of time to be used for uplink transmissions and a duration of time to be used for downlink transmissions. The schedule may be based on a comparison of values for a parameter monitored by the AP. The parameter may be monitored for uplink traffic and for downlink traffic. The parameter may indicate the latency experienced by each direction of traffic, or an intolerance of each direction of traffic to delay. The AP may schedule the uplink and downlink durations to compensate for the discrepancy in latency between the two directions of traffic.
Abstract:
Methods, systems, devices, and apparatuses are described for wireless communications in which first type of traffic may be transmitted from a gateway access point (AP) directly to a station. Beacon signals transmitted to the station are transmitted as part of the first type of traffic. A second type of traffic may be transmitted from the gateway AP to the station via at least one relay AP. The first type of traffic may include low-throughput traffic and may be transmitted over a long-range radio link (e.g., 2 GHz band link or sub-1 GHz band link). The second type of traffic may include high-throughput traffic and may be transmitted over at least one short-range radio link (e.g., 5 GHz band link). The gateway AP may receive low-throughput traffic directly from the station and high-throughput traffic from the station via the at least one relay AP.
Abstract:
Methods, systems, and devices are described for supporting simultaneous (e.g., overlapping) data communications by a wireless communication device. More specifically, the described features generally relate to supporting SBS communications by providing mechanisms to help mitigate interference and/or coordinate medium access. One mechanism involves aligning the data communications to mitigate interference. Another mechanism involves using channel reservation signal (e.g., a clear-to-send-to-self (CTS2S) signal) to help maintain simultaneous medium access. Yet another mechanism involves setting a second backoff period for a second channel based at least in part on a first backoff period for a first channel in wireless devices.
Abstract:
Overhead associated with packet communication is reduced by combining or eliminating one or more fields of a packet. In some implementations, a reduction in overhead associated with packets employing security (e.g., IEEE 802.11ah packets) can be achieved by reducing overhead associated with verification-related fields. For example, a packet can include a merged frame check sequence (FCS) and an integrity check value (ICV). In some implementations, an FCS is omitted from a packet.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system through efficient transmissions and acknowledgements of information between an AP and a station. The time between a determination by a station to enter a power saving mode and entering network sleep mode by the station may be reduced through a transmission, by an AP, of an MPDU to the station successive to an SIFS after transmission of an acknowledgement to the station of a PS-Poll frame from the station. The time to enter a power saving mode by a station may also be reduced through transmission of A-MPDUs in which a last MPDU of the A-MPDU has an indicator bit cleared to indicate no additional data is to be transmitted. An AP may prevent a retransmission of an MPDU to the station in the absence of an acknowledgement from the station, to further enhance efficiency.
Abstract:
Systems and methods are provided for preferentially locating a candidate channel likely to have an active network during a WLAN scanning process. A portion of a first incoming packet on a first wireless channel is received and analyzed to determine whether an active network is available on the first wireless channel. The reception of the first incoming packet is selectively aborted based at least in part on the analysis. The portion of the first incoming packet may be a header of the first incoming packet. The reception of the first incoming packet may be aborted in response to a trigger condition. The trigger condition may correspond to a determination that the first incoming packet is not a packet of interest, a determination that the first incoming packet is not a beacon, or a determination that a signal strength on the first incoming packet is below a threshold level.
Abstract:
Methods, apparatus, and computer-readable media for wireless communication by an access point (AP) may involve communicating with a station using a first modulation and coding scheme (MCS). An under-utilization of a medium access control (MAC) protocol data unit (MPDU) aggregation of the station while using the first MCS may be identified. The under-utilization may be caused by packet error rate (PER)-induced head of line (HOL) blocking. The MCS may be switched to a second MCS that is lower than the first MCS.