Abstract:
Aspects of the present disclosure provide techniques for efficient ranging. According to certain aspects, techniques are provided to signal the use of different resolutions of time units for parameters to be used in a ranging procedure, such as a fine timing measurement (FTM) procedure.
Abstract:
Techniques for determining a Round Trip Time (RTT) calibration value are disclosed. An example of a method according to the disclosure includes receiving a fine timing measurement (FTM) exchange between an initiating station and a responding station, calculating a plurality of differential round trip time (RTT) measurements based on the FTM exchange, calculating a responding station calibration value based on the plurality of differential RTT measurements, and transmitting the responding station calibration value to the responding station.
Abstract:
Techniques for context aware connections to a wireless network are disclosed. An example of an apparatus for wireless communication includes a first interface configured to receive neighbor report information from one or more wireless nodes, a processing system configured to generate a beacon frame, generate a neighbor report based on the received neighbor report information, a second interface configured to output the beacon frame for transmission, and output the neighbor report as an unsolicited frame after outputting the beacon frame.
Abstract:
Techniques for determining the position of a client station based on Access Network Query Protocol (ANQP) neighbor reports are disclosed. An example of a wireless transceiver system for providing a neighbor report in an ANQP query response message a memory, at least one processor operably coupled to the memory and configure to determine neighbor position information, receive an ANQP query request from a client station prior to performing a wireless client association process, generate a neighbor report, and send an ANQP query response including the neighbor report to the client station. The neighbor report may be ordered and the client station may be configured to initiate Fine Timing Measurement (FTM) sessions based on the order of the station within the neighbor report.
Abstract:
Techniques for providing neighbor reports for use in passive positioning of a client station are disclosed. An example method for broadcasting network neighbor reports according to the disclosure includes generating a beacon transmission, determining a neighbor report count value, if the neighbor report count value is greater than zero, then broadcasting the beacon transmission including at least a beacon frame and the neighbor report count value, and decrementing the neighbor report count value; if the neighbor report count value is equal to zero, then broadcasting the beacon transmission including at least a beacon frame and a neighbor report, and resetting the neighbor count value.
Abstract:
Aspects of the present disclosure provide techniques for efficient ranging. According to certain aspects, techniques are provided to signal the use of different resolutions of time units for parameters to be used in a ranging procedure, such as a fine timing measurement (FTM) procedure.
Abstract:
Disclosed are methods, devices, systems, apparatus, servers, computer-/processor-readable media, and other implementations, including a method, performed at a processor-based device, that includes obtaining antenna information for one or more wireless nodes, and generating based, at least in part, on the antenna information for the one or more wireless nodes, a heatmap representative of values measurable at a plurality of locations from signals transmitted by the one or more wireless nodes.
Abstract:
Methods and apparatuses of improving quality of positioning are disclosed. According to aspects of the present disclosure, a transition from a short training field to a long training field in one or more communication messages between two wireless stations may be detected. A station may then determine a first arrival correction time based on the transition from the short training field and the long training field. With the first arrival correction time, more accurate timing of communications between the two wireless stations may be determined and used for improving quality of positioning applications.
Abstract:
Techniques for passive positioning of a client station are disclosed. In an example a passive positioning scheme may include detecting an incoming message from an access point, determining a Round Trip Time (RTT) value associated with the access point, generating an acknowledgment message, calculating a time of departure for the acknowledgment message based on the RTT value, and sending the acknowledgment message at the time of departure.
Abstract:
Methods and apparatuses are presented for obfuscating the locations of terrestrial wireless transceivers, including wireless access points and femtocells. According to some embodiments, a method may receive, by a mobile device, data for a terrestrial wireless transceiver, wherein the data includes location coordinates of the terrestrial wireless transceiver, and wherein the location coordinates include an error term. Additionally, the method may include determining the error term based on the data. Furthermore, the method may include determining a corrected location of the terrestrial wireless transceiver by removing the error term from the location coordinates. In some instances, the data can further include a unique identifier associated with the terrestrial wireless transceiver, and wherein the error term is further determined based on the unique identifier.