摘要:
A field emission device (8) includes a cathode (80), an anode (84), and spacers (83) interposed therebetween. The cathode includes a network base (81) and a plurality of field emitters (82) formed thereon. The network base is formed of a plurality of electrically conductive carriers. The field emitters are located on surfaces of the carriers, respectively. The field emitters extend radially outwardly from the corresponding conductive carriers. The plurality of electrically conductive carriers may be made of electrically conductive fibers, for example, metal fibers, carbon fibers, organic fibers or another suitable fibrous material. Carrier portions of the plurality of electrically conductive carriers may be cylindrical, curved/arcuate, or at least approximately curved in shape.
摘要:
A field emission light source includes a foundation, a supporting member, a transparent shell, an anode, and a cathode. The transparent shell is disposed on the foundation, and thus defines a closed space in the transparent shell. The supporting member includes a first end and a second end opposite to the first end. The first end is connected to the foundation, and the second end is disposed at a center portion of the closed space. The cathode includes a plurality of carbon nanotubes. The cathode is disposed on the second end of the supporting member.
摘要:
A field emission lamp generally includes a bulb having an open end, a lamp head disposed at the open end of the bulb, an anode, and a cathode. The anode includes an anode conductive layer formed on an inner surface of the bulb, a fluorescent layer deposited on the anode conductive layer, and an anode electrode electrically connected with the anode conductive layer and the lamp head. The cathode includes an electron emission element and a cathode electrode electrically connected with the electron emission element and the lamp head. The electron emission element has an electron emission layer. The electron emission layer includes getter powders therein to exhaust unwanted gas in the field emission lamp, thereby ensuring the field emission lamp with a high degree of vacuum during operation thereof. A method for making such field emission lamp is also provided.
摘要:
A field emission double-plane light source includes a first anode, a second anode, and a cathode separately arranged between the first and second anodes. Each of the first and second anodes includes an anode substrate, an anode conductive layer formed on a surface of the anode substrate, and a fluorescent layer formed on the anode conductive layer. The cathode has a metallic based network with two opposite surfaces, each facing a respective one of the first and second anodes. Each of the surfaces of the network has a respective electron emission layer thereon facing a corresponding fluorescent layer of one of the first and second anodes. Each of the electron emission layers includes a glass matrix, and a plurality of carbon nanotubes, metallic conductive particles, and getter powders dispersed in the glass matrix. A method for making such field emission double-plane light source is also provided.
摘要:
A field emission device (10) includes a base (12), a conductive paste (16), and at least one carbon nanotube yarn (14). The at least one carbon nanotube yarn is attached to the base using the conductive paste. This avoids separation of the at least one carbon nanotube yarn from the base by electric field force in a strong electric field. A method for making the field emission device includes the steps of: (a) providing a base; (b) attaching at least one carbon nanotube yarn to the base using conductive paste; and (c) sintering the conductive paste to obtain the field emission device with the carbon nanotube yarn firmly attached to the base.
摘要:
A light source apparatus (8) includes a rear plate (80), a front plate formed with an anode layer (82), and a cathode (81) interposed therebetween. The cathode includes a plurality of electrically conductive carriers (812) and a plurality of field emitters (816) formed thereon. The field emitters are uniformly distributed on anode-facing surfaces of the conductive carriers. Preferably, the field emitters extend radially outwardly from the corresponding conductive carriers. The conductive carriers are parallel with each other, and are located substantially on a common plane. Each of the conductive carriers can be connected with a pulling device arranged at least one end thereof, and an example of the pulling device is a spring. The conductive carriers may be cylindrical, prism-shaped or polyhedral.
摘要:
A field emission device (8) includes a cathode (80), an anode (84), and spacers (83) interposed therebetween. The cathode includes a network base (81) and a plurality of field emitters (82) formed thereon. The network base is formed of a plurality of electrically conductive carriers. The field emitters are located on surfaces of the carriers, respectively. The field emitters extend radially outwardly from the corresponding conductive carriers. The plurality of electrically conductive carriers may be made of electrically conductive fibers, for example, metal fibers, carbon fibers, organic fibers or another suitable fibrous material. Carrier portions of the plurality of electrically conductive carriers may be cylindrical, curved/arcuate, or at least approximately curved in shape.
摘要:
A double-faced light emitting diode display includes a pair of parallel shield panels (20, 20′), and a light emitting module (30) located between the shield panels. Each shield panel includes a video contrast enhancement assembly. The light emitting module includes an opaque insulative substrate (31) with a pair of pixel matrixes symmetrically formed on opposite surfaces (310, 310′) thereof and a circuit driving system formed at at least one of the surfaces. Each pixel matrix includes a plurality of pixel units (320, 320′). Symmetrically opposite pairs of pixel units are electrically interconnected so that the shield panels can simultaneously display same images. The double-faced light emitting diode display has a simple structure, a small size, low cost and full color display capability, and can be advantageously applied in traffic signal boards, large-scale display boards, surround cinemas and so on.
摘要:
A double-faced plasma display panel includes two parallel viewing screens (20, 20′), and a discharge structure (30) located between the viewing screens. Each viewing screen includes a transparent substrate (21, 21′), with a plurality of transparent electrodes (23, 24, 23′, 24′), a transparent dielectric layer (22, 22′), and a protection layer (25, 25′) formed at an inner surface of the transparent substrate. The discharge structure includes an opaque insulative substrate (31), with a plurality of addressing electrodes (37, 37′), an opaque dielectric layer (38, 38′), a plurality of separation walls (39, 39′), and a fluorescent layer (40, 40′) formed at each of opposite surfaces (310, 310′) thereof. Symmetrically opposite pairs of same electrodes are electrically interconnected so that the viewing screens can simultaneous display a same image. Only a single driving system is needed to achieve the simultaneous display.
摘要:
The present disclosure provides a field emission electronic device. The field emission electronic device includes an insulating substrate, a first electrical conductor located on surface of the insulating substrate, a number of electron emitters connected to the first electrical conductor, a second electrical conductor spaced apart from and insulated from the first electrical conductor. Each of the number of electron emitters includes at least one electron emitter. Each of the electron emitters includes a carbon nanotube pipe. The carbon nanotube pipe includes a first end, a second end and a main body connecting the first end and the second end. The first end of the carbon nanotube pipe is electrically connected to one of the plurality of row electrodes. The second end of the carbon nanotube pipe has a number of carbon nanotube peaks.