Abstract:
An image display system includes a display unit displaying an image, a projection unit projecting in a target space a virtual image corresponding to the image with an output light of the display unit, a body unit provided thereto the display unit and the projection unit, and an image producing unit including a first correction unit and a second correction unit. The first correction unit performs a first correction processing of correcting, based on a first orientation signal indicative of a first orientation change of the body unit, a display position of the virtual image in the target space. The second correction unit performs a second correction processing of correcting, based on a second orientation signal indicative of a second orientation change of the body unit which is faster than the first orientation change, the display position of the virtual image in the target space.
Abstract:
A video control device includes a processor and a memory including a program that, when executed, causes the processor to perform operations including: obtaining a position of a vehicle determined by a satellite positioning system; obtaining an estimated position of the vehicle estimated based on dead reckoning; estimating a deviation in an orientation of the vehicle, based on the position of the vehicle determined by the satellite positioning system and the estimated position of the vehicle estimated based on the dead reckoning; calculating an estimated orientation of the vehicle, based on the deviation in the orientation of the vehicle estimated; and outputting the estimated orientation of the vehicle to a video display device that displays information which is based on the orientation of the vehicle.
Abstract:
An image display system includes a display unit displaying an image, a projection unit projecting in a target space a virtual image corresponding to the image with an output light of the display unit, a body unit provided thereto the display unit and the projection unit, and an image producing unit including a first correction unit and a second correction unit. The first correction unit performs a first correction processing of correcting, based on a first orientation signal indicative of a first orientation change of the body unit, a display position of the virtual image in the target space. The second correction unit performs a second correction processing of correcting, based on a second orientation signal indicative of a second orientation change of the body unit which is faster than the first orientation change, the display position of the virtual image in the target space.
Abstract:
A video display system includes: a screen on which an mage for displaying a virtual image is projected; a light source that emits laser light; a scanner that projects the image onto the screen by biaxially scanning the laser light onto the screen; and a controller that generates the image and controls the light source using an image signal for causing the generated image to be projected onto the screen by the laser light, and receives an input of sensing information measured using a temperature sensor and controls the scanner in accordance with the input sensing information. When the sensing information indicates a temperature outside a given temperature range, the controller causes the scanner to reduce an amplitude of the biaxial scanning in at least one axial direction to a smaller value than when the sensing information indicates a second brightness or a temperature within the given temperature range.
Abstract:
An image display system includes a body, a first correction unit, and a second correction unit. The body houses a display unit to display an image and projects a virtual image, corresponding to the image, onto a target space using outgoing light of the display unit. The first correction unit corrects for distortion of the image. The second correction unit corrects a display location of the image on the display unit in accordance with an orientation signal representing a change in orientation of the body. Each of divisional areas of a display screen of the display unit is assigned with a distortion correction parameter for correcting for the distortion of the virtual image. The first correction unit applies distortion correction to each of the image regions of the image on the display screen based on a distortion correction parameter assigned to a divisional area where the image region is displayed.
Abstract:
A display system according to an aspect includes a screen, a drive control unit, and a projection unit. The drive control unit has the screen moved in a movement direction. The projection unit renders an image on the screen by irradiating the screen with a light beam that scans the screen and projects a virtual image onto a projection plane with the light beam transmitted through the screen. The drive control unit has the screen moved in the movement direction such that an optical path leading to a rendering point on the screen varies its length according to a tilt angle defined by the projection plane with respect to a reference plane.
Abstract:
An information processing system that appropriately estimates a driving conduct includes: a detector that detects a vehicle environment state, which is at least one of surroundings of a vehicle and a driving state of the vehicle; a behavior learning unit configured to cause a neural network to learn a relationship between the vehicle environment state detected by the detector and a behavior of the vehicle implemented after the vehicle environment state; and a behavior estimation unit configured to estimate a behavior of the vehicle by inputting, into the neural network that learned, the vehicle environment state detected at a current point in time by the detector.
Abstract:
An information communication terminal includes the followings. An input receiving unit receives an input from a user. A communication unit obtains presentation information corresponding to an input by the user from a server according to a dialogue scenario, every time the input is received. A dialogue processing unit presents the user with the presentation information obtained by the communication unit. A communication state determination unit determines a communication state between the communication unit and the server. When the communication state determination unit makes a first determination that the communication is deteriorated during a dialogue, the dialogue processing unit causes the communication unit to obtain, as candidate presentation information, at least one presentation information with a possibility of being presented to the user after the first determination according to the dialogue scenario.
Abstract:
A display device includes a processing circuit and a display. The processing circuit obtains an ambient temperature of a gyro sensor, obtains a sensitivity associated with a temperature range including the ambient temperature, corrects an angular velocity of the gyro sensor in accordance with the sensitivity, estimates a first estimated vehicle orientation based on the angular velocity corrected, estimates a second estimated vehicle orientation based on the angular velocity detected by the gyro sensor, derives a third estimated vehicle orientation by correcting the first estimated vehicle orientation using a position and a speed of vehicle, and updates the sensitivity of the temperature range using a calculated sensitivity that is based on the second estimated vehicle orientation and the third estimated vehicle orientation. The display displays an image that is in accordance with the third estimated vehicle orientation.
Abstract:
A display device includes a light guide body and displays an image of light emitted from the light guide body. The light guide body is of a curved shape, and includes a light guide plate and an optical element that diffracts and emits light propagating inside the light guide plate. The optical element is provided in the light guide body so that the angle of the optical element relative to a propagation direction in which the light propagates inside the light guide plate is constant irrespective of where in the optical element.