Abstract:
In accordance with a first aspect of the present disclosure, a radio frequency identification (RFID) transponder is provided, comprising a modulator and a modulator controller, wherein the modulator is configured to generate a modulated signal to be transmitted to an external RFID reader, and wherein the modulator controller is configured to control a duty cycle of the modulator in dependence on an available amount of power. In accordance with a second aspect of the present disclosure, a method of operating a radio frequency identification (RFID) transponder is conceived, comprising: generating, by a modulator of the RFID transponder, a modulated signal to be transmitted to an external RFID reader; controlling, by a modulator controller of the RFID transponder, a duty cycle of the modulator in dependence on an available amount of power.
Abstract:
A Radio Frequency Identification (RFID) tag is disclosed. The RFID tag includes an antenna to receive an input AC signal and a tuning system coupled with the antenna to optimize signal strength of the input AC signal. The tuning system includes a charge pump rectifier. A diode rectifier is included and is coupled with the antenna to receive the input AC signal after the tuning system optimizes the signal strength by tuning input impedance of the antenna.
Abstract:
A method for operating a first near field communication, NFC, device, wherein the NFC device comprises an NFC interface and a memory, the method comprising: i) receiving a request for a service from a second NFC device at the NFC interface, ii) allocating a first information from a first memory unit of the memory that is configured to take part in providing the service, iii) allocating a second information from a second memory unit that is not configured to take part in providing the service, and transferring the second information from the second memory unit to the first memory unit, hereby iv) transferring at least a part of the first information and/or at least a part of the second information virtually beyond the first memory unit, v) combining the first information and the second information into a message, and vi) providing the message to the second NFC device as a response to the request.
Abstract:
Certain exemplary aspects of the present disclosure are directed toward an apparatus in which a first circuit communicates with a plurality of different types of RFID transponders using radio frequency signals. A second circuit detects and communicates with the plurality of different types of RFID transponders via the first circuit, respectively using a command set for the type of RFID transponder that the first circuit is communicating with. The second circuit, in response to detecting an RFID transponder having configuration data for a new command set, accesses and uses the configuration data for the new command set to update a configuration of the second circuit to enable communication with the new type of RFID transponder.