Abstract:
The purpose of the present invention is to provide an emitter capable of easily and highly efficiently emitting electrons, an electron gun using same, and an electronic device. This emitter is provided with a cathode holder, and an acicular substance secured to the cathode holder. An end, to which the acicular substance is secured, of the cathode holder is bent at α (α(°) satisfies 5
Abstract:
The purpose of the present invention is to provide an emitter that is made of hafnium carbide (HfC) and that releases electrons in a stable and highly efficient manner, a method for manufacturing the emitter, and an electron gun and electronic device in which the emitter is used. In this nanowire equipped emitter, the nanowires are made of hafnium carbide (HfC) single crystal, the longitudinal direction of the nanowires match the crystal direction of the hafnium carbide single crystal, and the end part of the nanowires through which electrons are to be released comprise the (200) face and the {310} face of the hafnium carbide single crystal, with the (200) face being the center and the {311} faces surrounding the (200) face.
Abstract:
The present invention provides an electrode that is excellent in conductivity and improves the power density and energy density of a power storage device, a method for manufacturing the same, and a power storage device using the same. The electrode of the present invention is an electrode containing at least a graphene aggregate having a particle diameter of 0.1 μm or more and less than 100 μm, wherein the graphene aggregate is an aggregate of graphene basic structures each having graphene layers among which a fibrous material is located. A method for manufacturing the electrode of the present invention comprises a step of mixing the above-mentioned graphene basic structures with at least a lower alcohol having 1 or more and 5 or less carbon atoms to form a graphene aggregate in which the graphene basic structures are aggregated, and a step of forming a film using the graphene aggregate.
Abstract:
The object of the present invention is to provide linked stacks of reduced graphene, in which excellent electrical property on the surface of graphene may be utilized, a method for producing the same, powder comprising the same, and film comprising the same. The object may be solved by using linked stacks of partly reduced graphene 11 comprising two or more stacks of partly reduced graphene 21 to 24 linked together, in which the stack of partly reduced graphene 21 has two or more sheets of partly reduced graphene 31 and a nanosubstance 32 held between the sheets of partly reduced graphene 31, the partly reduced graphene 31 has no carbonyl groups and has carboxyl groups 31a and hydroxyl groups 31b, and different stacks of partly reduced graphene 21 to 24 are linked to each other by an ester bond 34.
Abstract:
The object of the present invention is to provide linked stacks of reduced graphene, in which excellent electrical property on the surface of graphene may be utilized, a method for producing the same, powder comprising the same, and film comprising the same. The object may be solved by using linked stacks of partly reduced graphene 11 comprising two or more stacks of partly reduced graphene 21 to 24 linked together, in which the stack of partly reduced graphene 21 has two or more sheets of partly reduced graphene 31 and a nanosubstance 32 held between the sheets of partly reduced graphene 31, the partly reduced graphene 31 has no carbonyl groups and has carboxyl groups 31a and hydroxyl groups 31b, and different stacks of partly reduced graphene 21 to 24 are linked to each other by an ester bond 34.