Abstract:
A magnetic resonance imaging apparatus includes: a pair of static magnetic field generators separately disposed at the top and bottom of an imaging space in which a subject is placed; a shim magnetic material, disposed on the imaging-space side of each of the pair of static magnetic field generators, for generating a magnetic field to adjust the static magnetic field; a gradient magnetic field generator; a high-frequency magnetic field generator; a temperature sensor for directly or indirectly measuring the temperature of the shim magnetic material; and a controller for controlling the gradient magnetic field generator and the high-frequency magnetic field generator to execute an imaging pulse sequence. The controller determines the inhomogeneity of the static magnetic field from the output of the temperature sensor, considering the change in a magnetic field adjustment parameter due to the temperature change of the shim magnetic material, and causes a warning message to be presented if the determined static magnetic field inhomogeneity has exceeded a predetermined allowable value.
Abstract:
A magnetic resonance imaging apparatus comprising a vacuum container vacuumized inside thereof, a liquid refrigerant container installed in the vacuum container to store liquid refrigerant therein, a superconducting member installed inside the liquid refrigerant container to be rendered superconductive by being impregnated in the liquid refrigerant and allow current to flow therethrough, and freezing means connected to an insertion port provided in the liquid refrigerant container to re-condense gas evaporated from the liquid refrigerant in the liquid refrigerant container, characterized in that an air flow-in preventing means is provided that raises the pressure in the liquid refrigerant container to prevent air from flowing into the insertion port of the liquid refrigerant container from the outside of the vacuum container.
Abstract:
Operation signals of a compressor 21 for a helium refrigerator 20 are inputted to a correction magnetic field power source 13, so as to generate a current in synchronism with mechanical vibration of the helium refrigerator 20. The current generated by the correction magnetic field power source 13 drives a magnetic field correction coil 14 combined with the static magnetic field generation magnet 2 so as to generate a correction magnetic field of which amplitude is equal to that of the magnetic field variation component caused by the mechanical vibration of the helium refrigerator 20 and of which phase is inverted thereto. Thereby, an open type MRI apparatus employing a super conducting magnet, which eliminates a magnetic field variation due to mechanical vibration of the helium refrigerator 20 and always maintains a stable magnetic field, is realized.
Abstract:
In a nuclear magnetic resonance spectrometer, this invention relates to an improvement of a lock system for stabilizing a magnetic field intensity. It is an object of the present invention to dissolve a low stability by using a conventional voltage control oscillator and a complex operation in the case of varying a reference material for locking. In the present invention, a radio frequency of a high stable reference frequency source is demultiplied by a variable frequency divider so that a frequency modulation or a modulation of the magnetic field is effected by the output thus demultiplied. When the reference material is changed, the operation can easily be made by varying the demultiplication ratio of the variable frequency divider.
Abstract:
A menu display device includes: means for displaying on a screen a given range within a menu, in which a plurality of menu items are arranged in an array; means for moving the given range in response to a predetermined operation performed by a user; means for determining whether or not the menu item at an end within the menu is displayed in a predetermined position of the screen; and means for changing, when the menu item at the end is displayed in the predetermined position of the screen, the space between the menu items displayed on the screen in response to the predetermined operation performed by the user.
Abstract:
In order to prevent quenching caused accidentally in a superconducting magnet, an MRI apparatus vibrates the superconducting magnet in order to prevent quenching of the superconducting magnet in a time period for which a predetermined imaging sequence is not executed (step 210). As a specific method, a gradient magnetic field may be generated by a gradient magnetic field coil for an imaging sequence of the MRI apparatus, or a gradient magnetic field may be generated using a gradient magnetic field coil for vibration provided apart from the gradient magnetic field coil for an imaging sequence. In addition, in a period for which the predetermined imaging sequence is not executed, a phantom may be imaged to prevent the quenching of the superconducting magnet.
Abstract:
An exemplary information-processing device includes: a first display controller configured to display selectively on a display a first image and a second image including the first image in a reduced size; and a second display controller configured, while the second display is displayed on the display, to display an indicator image on the display, the indicator image indicating a position of an image to be displayed when display of the second image is changed to display of the first image.
Abstract:
A magnetic resonance imaging apparatus includes: a pair of static magnetic field generators separately disposed at the top and bottom of an imaging space in which a subject is placed; a shim magnetic material, disposed on the imaging-space side of each of the pair of static magnetic field generators, for generating a magnetic field to adjust the static magnetic field; a gradient magnetic field generator; a high-frequency magnetic field generator; a temperature sensor for directly or indirectly measuring the temperature of the shim magnetic material; and a controller for controlling the gradient magnetic field generator and the high-frequency magnetic field generator to execute an imaging pulse sequence. The controller determines the inhomogeneity of the static magnetic field from the output of the temperature sensor, considering the change in a magnetic field adjustment parameter due to the temperature change of the shim magnetic material, and causes a warning message to be presented if the determined static magnetic field inhomogeneity has exceeded a predetermined allowable value.
Abstract:
A menu display device includes: means for displaying on a screen a given range within a menu, in which a plurality of menu items are arranged in an array; means for moving the given range in response to a predetermined operation performed by a user; means for determining whether or not the menu item at an end within the menu is displayed in a predetermined position of the screen; and means for changing, when the menu item at the end is displayed in the predetermined position of the screen, the space between the menu items displayed on the screen in response to the predetermined operation performed by the user.