Abstract:
A load control system may include control devices capable of being associated with each other at one or more locations for performing load control. Control devices may include control-source devices and/or control-target devices. A location beacon may be discovered and a unique identifier in the location beacon may be associated with a unique identifier of one or more control devices. Upon subsequent discovery of the location beacon, the associated load control devices may be controlled. The beacons may be communicated via radio frequency signals, visible light communication, and/or audio signals. The visible light communication may be used to communicate other types of information to devices in the load control system. The visible light communication may be used to identify link addresses for communicating with load control devices, load control instructions, load control configuration instructions, network communication information, and/or the like. The information in the beacons may be used to commission and/or control the load control system.
Abstract:
A load control system may be configured using a graphical user interface software. The graphical user interface software may display a first icon and a second icon. The first icon may represent a first electrical device and the second icon may represent a second electrical device. The first icon and the second icon may represent the relative location of the first electrical device and the second electrical device within a load control environment. The graphical user interface software may display a line from a selected icon (e.g., first icon) to a cursor. The graphical user interface software may adjust the line from the selected icon, for example, as the cursor moves. The graphical user interface software may define and store an association between the first electrical device and a second electrical device, for example, in response to the user selecting the first icon and the second icon.
Abstract:
A load control system may control an electrical load in a space of a building occupied by an occupant. The load control system may include a controller configured to determine the location of the occupant, and a load control device configured to automatically control the electrical load in response to the location of the occupant. The load control system may also include a mobile device adapted to be located on or immediately adjacent the occupant and configured to transmit and receive wireless signals. The load control device may be configured to automatically control the electrical load when the mobile device is located in the space. The load control system may further comprise an occupancy sensor and the load control device may automatically control the electrical load when the occupancy sensor indicates that the space is occupied and the mobile device is located in the space.
Abstract:
A load control system may be configured using a graphical user interface software. The graphical user interface software may display a first icon and a second icon. The first icon may represent a first electrical device and the second icon may represent a second electrical device. The first icon and the second icon may represent the relative location of the first electrical device and the second electrical device within a load control environment. The graphical user interface software may display a line from a selected icon (e.g., first icon) to a cursor. The graphical user interface software may adjust the line from the selected icon, for example, as the cursor moves. The graphical user interface software may define and store an association between the first electrical device and a second electrical device, for example, in response to the user selecting the first icon and the second icon.
Abstract:
A design software, e.g., a graphical user interface (GUI) software, may be used to design and/or configure a load control system. The design software may be executed on a network device (e.g., a personal computer, a laptop, a tablet, or a smart phone). The design software may allow for easy configuration of load control panels and effortless multiplication of configured panels during the design of the load control system. Each load control panel may have a plurality of control devices, such as load control devices (e.g., power modules, dimming modules, and/or switching modules), system controllers, and/or power supplies. The design software may allow for the configuration of load control panels having different types and numbers of control devices. In addition, the design software may allow for the multiplication of load control panels having the same configuration (e.g., the same type and number of control devices).