Abstract:
A system includes a window treatment adjacent to a window of a room. At least one motor drive unit is associated with the window treatment, for varying the position of the window treatment. A sensor measures a light level (e.g., an outdoor light level) at the window. A controller provides signals to the motor drive unit to automatically adjust the position of the window treatment so as to control a penetration distance of sunlight into the room when the window treatment is partially opened. The controller is configured to position the window treatment in a bright override position if the measured light level is at least a bright threshold value. The controller is configured to select the bright threshold value from among at least two predetermined values. The selection depends on an angle of incidence between light rays from the sun and a surface normal of the window.
Abstract:
A visible light sensor may be configured to sense environmental characteristics of a space using an image of the space. The visible light sensor may be controlled in one or more modes, including a daylight glare sensor mode, a daylighting sensor mode, a color sensor mode, and/or an occupancy/vacancy sensor mode. In the daylight glare sensor mode, the visible light sensor may be configured to decrease or eliminate glare within a space. In the daylighting sensor mode and the color sensor mode, the visible light sensor may be configured to provide a preferred amount of light and color temperature, respectively, within the space. In the occupancy/vacancy sensor mode, the visible light sensor may be configured to detect an occupancy/vacancy condition within the space and adjust one or more control devices according to the occupation or vacancy of the space. The visible light sensor may be configured to protect the privacy of users within the space via software, a removable module, and/or a special sensor.
Abstract:
A system includes a window treatment adjacent to a window of a room. At least one motor drive unit is associated with the window treatment, for varying the position of the window treatment. A sensor measures a light level (e.g., an outdoor light level) at the window. A controller provides signals to the motor drive unit to automatically adjust the position of the window treatment so as to control a penetration distance of sunlight into the room when the window treatment is partially opened. The controller is configured to position the window treatment in a bright override position if the measured light level is at least a bright threshold value. The controller is configured to select the bright threshold value from among at least two predetermined values. The selection depends on an angle of incidence between light rays from the sun and a surface normal of the window.
Abstract:
A system includes a window treatment adjacent to a window of a room. At least one motor drive unit is associated with the window treatment, for varying the position of the window treatment. A sensor measures a light level (e.g., an outdoor light level) at the window. A controller provides signals to the motor drive unit to automatically adjust the position of the window treatment so as to control a penetration distance of sunlight into the room when the window treatment is partially opened. The controller is configured to position the window treatment in a bright override position if the measured light level is at least a bright threshold value. The controller is configured to select the bright threshold value from among at least two predetermined values. The selection depends on an angle of incidence between light rays from the sun and a surface normal of the window.
Abstract:
A motorized window treatment system controls a plurality of motorized window treatments to maximize daylight autonomy, while minimizing cognitive dissonance. The system may include motorized window treatments, window sensors, and a system controller. Each motorized window treatment may be operable to adjust a respective covering material to control the amount of light entering a space. Each sensor may be mounted adjacent to at least one of the motorized window treatments, and may be configured to measure an amount of daylight shining on the sensor. The system controller may receive sensor readings from the sensors and may control the motorized window treatments in response to the sensors to keep the covering materials aligned when the sensor readings are within a predetermined amount. The system controller may dynamically group and re-group the sensors into subgroups based upon the sensor readings and may control the motorized window treatments based upon the subgroups.
Abstract:
A fabric selection tool provides an automated procedure for recommending and/or selecting a fabric for a window treatment to be installed in a building. The recommendation may be made to optimize the performance of the window treatment in which the fabric may be installed. The recommended fabric may be selected based on performance metrics associated with each fabric in an environment. The fabrics may be ranked based upon the performance metrics of one or more of the fabrics. One or more of the fabrics, and/or their corresponding ranks, may be displayed to a user for selection. The recommended fabrics may be determined based on combinations of fabrics that provide performance metrics for various façades of the building. Using the ranking system provided by the fabric selection tool, the user may obtain a fabric sample and/or order one or more of the recommended fabrics.
Abstract:
A real-time, mobile, energy savings and cost estimation tool may be provided. The energy savings and cost estimation tool may be implemented on a mobile electronic device, such as, but not limited to a laptop computer, tablet, or a smart phone, for example. A user may create a project and define project information using the energy savings and cost estimation tool while at the project site. For example, the user may discuss the project with a potential customer, ask questions about the project to be created or retrofitted, walk around the project site, and enter the project information into the energy savings and cost estimation tool. Using the project information gathered, the energy savings and cost estimation tool may provide real-time feedback, such as an energy usage audit, an energy usage solution design, an energy analysis, and/or a return on investment (ROI) analysis for the project, to the user.
Abstract:
Motorized window treatments may each adjust a position of a covering material to allow light into a space in a building. The control information for controlling the motorized window treatments may be stored and/or accessed to understand how the motorized window treatments are operating. The control information may indicate a control state and/or a position of the covering material when an identified daylight intensity is being received at the space. The control information may inform a user of the operation of the motorized window treatments and allow the user to adjust various control parameters by which the motorized window treatments may be controlled. Recommended adjustments may also be provided to the user based on a user-identified problem with the operation of the motorized window treatments. The recommended adjustments to the control parameters may be accepted by the user and may be stored for being accessed and/or edited.