Abstract:
A method is provided for producing carbon dioxide by combusting a carbonaceous fuel with oxygen or with a gas mixture containing more than 25 mol % of oxygen obtaining a flue gas mixture, wherein the flue gas mixture is processed obtaining a secondary gas mixture containing carbon dioxide and oxygen, and wherein a part of the oxygen contained in the secondary gas mixture is catalytically reacted with a first auxiliary fuel in a reactor system comprising a series of multiple reactors, obtaining further carbon dioxide and water. A further part of the oxygen contained in the secondary gas mixture is catalytically reacted with a second auxiliary fuel in the reactor system. A corresponding apparatus is also described herein.
Abstract:
The invention relates to a method and device for generating two purified partial air streams under different pressures. A total air stream (1) is compressed to a first total air pressure. The compressed total air stream (5) is cooled with cooling water under the first total air pressure by way of heat exchange (4, 6). The heat exchange with cooling water for cooling the total air stream (5) is carried out as a direct heat exchange in a first direct contact cooler (6), at least in part. The cooled total air stream (9) is divided into a first partial air stream (10) and a second partial air stream (11). The first partial air stream (10) is purified in a first purification device (18) under the first total air pressure, generating the first purified partial air stream (19). The second partial air stream (11) is re-compressed to a higher pressure (12), which is higher than the first total air pressure. The re-compressed second partial air stream (14) is cooled with cooling water in a second direct contact cooler (15) by way of direct heat exchange (13, 15). The cooled second partial air stream (17) is purified under the higher pressure in a second purification device (30), thus generating the second purified partial air stream (31).
Abstract:
Integration of an oxyfuel combustion boiler at elevated pressures and a heat exchanger is achieved to produce carbon dioxide by feeding flue gas comprising carbon dioxide and water from the oxyfuel combustion boiler to a direct contact cooler column wherein water is condensed at a temperature of 0 to 10° C. lower than its dew point; feeding a portion of the condensed water from the direct contact cooler column to the oxyfuel combustion boiler; feeding a portion of the carbon dioxide from the direct contact cooler column to the oxyfuel combustion boiler; and recovering a portion of the carbon dioxide from the direct contact cooler column.
Abstract:
A method for producing an air product in an air separation plant. Feed air is cooled at least in a main air compressor and is fed into a distillation column system. A fluid storage unit and a cold accumulator are used. In a first operating mode, fluid is stored in the fluid storage unit and the cold accumulator is heated. In a third operating mode, fluid is released and the cold accumulator is cooled, and in a second operating mode, fluid is neither stored nor released.
Abstract:
The invention relates to a method and device for generating two purified partial air streams under different pressures. A total air stream (1) is compressed to a first total air pressure. The compressed total air stream (5) is cooled with cooling water under the first total air pressure by way of heat exchange (4, 6). The heat exchange with cooling water for cooling the total air stream (5) is carried out as a direct heat exchange in a first direct contact cooler (6), at least in part. The cooled total air stream (9) is divided into a first partial air stream (10) and a second partial air stream (11). The first partial air stream (10) is purified in a first purification device (18) under the first total air pressure, generating the first purified partial air stream (19). The second partial air stream (11) is re-compressed to a higher pressure (12), which is higher than the first total air pressure. The re-compressed second partial air stream (14) is cooled with cooling water in a second direct contact cooler (15) by way of direct heat exchange (13, 15). The cooled second partial air stream (17) is purified under the higher pressure in a second purification device (30), thus generating the second purified partial air stream (31).
Abstract:
A method and apparatus for cooling a load using liquid nitrogen conveyed in a circuit are provided. Cooled liquid nitrogen is used for cooling the liquid nitrogen conveyed in the circuit. A first proportion of the liquid nitrogen is cooled in an open cooling system and a second proportion is cooled in a closed cooling system using one or more cooling units. The open cooling system and closed cooling system are used for cooling of a power supply having a first end and a second end. The open cooling system is arranged at the first end and the closed cooling system is arranged at the second end. Cooling power is provided in a first time period as a first, smaller amount of total cooling power and in a second time period as a second, higher amount of total cooling power. A first proportion of the amount of total cooling power is provided by means of the open cooling system and a second proportion is provided by means of the closed cooling system. The first proportion in the first time period is set to a lower value than in the second time period.
Abstract:
A method and device for generating electrical energy in a combined system of power plant, cold storage system and air compression system. The air compression system has a primary air compressor for generating a primary compressed air flow at a first pressure level. The power plant has a combustion unit which operates at a second pressure level and generates a combustion gas from which electrical energy is generated. The cold storage system has means for generating cold from compressed air, means for storing cold thus produced and means for generating a compressed air flow at the second pressure level using the stored cold. In a first operating mode (charging mode), a first compressed air flow is introduced from the air compression system into the cold storage system to charge the cold reservoir. In a second operating mode (discharging mode), the first compressed air flow generated in the primary air compressor, is introduced into the cold storage system to discharge the cold reservoir and to generate a third compressed air flow at the second pressure level, which is introduced into the combustion unit. The air compression system has a first booster for boosting compressed air compressed in the primary air compressor to the second pressure level. In a third operating mode (normal mode), the entire primary compressed air flow generated in the primary air compressor is boosted in the first booster to the second compressed air level and introduced into the combustion unit.
Abstract:
The invention provides a process and apparatus to generate electric energy in a system comprising a power station and air treatment plant. The power station has a first gas expansion unit connected to a generator. The air treatment plant has an air compression unit, heat exchanger system and tank for liquid. In a first operating mode, feed air is compressed in the air compression unit and cooled in the heat exchanger system. A storage fluid containing less than 40 mol % of oxygen is produced and stored as low-temperature liquid in the tank for liquid. In a second operating mode, low-temperature liquid is taken from the tank for liquid and vaporized or pseudovaporized under superatmospheric pressure. The gaseous high-pressure storage fluid produced in this way is expanded in a gas expansion unit. The (pseudo)vaporization of the low-temperature liquid is carried out in the heat exchanger system of the air treatment plant.