Abstract:
A display device using a semiconductor light emitting device and a method of fabricating the semiconductor light emitting device are disclosed. The display device includes a substrate, a plurality of first electrodes disposed on the substrate, an anisotropic conductive film disposed on the substrate provided with the first electrodes, a plurality of semiconductor light emitting devices disposed on the anisotropic conductive film layer, electrically connected to the first electrodes, and constituting individual pixels, and a plurality of second electrodes disposed between the semiconductor light emitting devices and electrically connected to the semiconductor light emitting devices. Thus, alignment of the semiconductor light emitting device array may be simplified by use of an anisotropic conductive film Due to excellent brightness, the semiconductor light emitting devices, which are small in size, may form individual sub-pixels. In addition, the distance between the semiconductor light emitting devices is sufficiently long to embody a flexible display device.
Abstract:
A display device according to an embodiment of the present disclosure may include a lower substrate disposed with a line electrode at an upper portion thereof, a plurality of semiconductor light emitting devices electrically connected to the line electrode to generate light and disposed to be separated from one another, and an adhesive portion including a body configured to fix the location of the lower substrate to that of the semiconductor light emitting device, and a conductor dispersed within the body to electrically connect the lower substrate to the semiconductor light emitting device, wherein the plurality of semiconductor light emitting devices form one pixel region (P) having red, green and blue semiconductor light emitting devices that emit red, green and blue light, and contain a material selected from inorganic semiconductor materials, and the adhesive portion blocks light generated from the plurality of semiconductor light emitting devices.
Abstract:
A display device including a pixel electrode portion electrically connected to a thin film transistor; a semiconductor light emitting device configured to emit light to form an individual pixel, and including a conductive electrode; a conductive adhesive layer adhered to the semiconductor light emitting device, and configured to electrically connect the pixel electrode portion to the conductive electrode; and a buffer layer including an elastic material to protect the thin film transistor, and disposed between the thin film transistor and the conductive adhesive layer.
Abstract:
A display device including a wiring substrate having a first substrate layer and a second substrate layer, a conductive adhesive layer configured to cover the wiring substrate, a plurality of semiconductor light emitting devices coupled to the conductive adhesive layer and electrically connected to a first electrode and a second electrode. Further, the first electrode is disposed on the first substrate layer, and the second substrate layer has one surface facing the conductive adhesive layer and the other surface covering the first electrode, and an auxiliary electrode electrically connected to the first electrode and the second electrode are disposed on one surface of the second substrate layer.
Abstract:
A display device using a semiconductor light emitting device and a method of fabricating the semiconductor light emitting device are disclosed. The display device includes a substrate, a plurality of first electrodes disposed on the substrate, an anisotropic conductive film disposed on the substrate provided with the first electrodes, a plurality of semiconductor light emitting devices disposed on the anisotropic conductive film layer, electrically connected to the first electrodes, and constituting individual pixels, and a plurality of second electrodes disposed between the semiconductor light emitting devices and electrically connected to the semiconductor light emitting devices. Thus, alignment of the semiconductor light emitting device array may be simplified by use of an anisotropic conductive film Due to excellent brightness, the semiconductor light emitting devices, which are small in size, may form individual sub-pixels. In addition, the distance between the semiconductor light emitting devices is sufficiently long to embody a flexible display device.
Abstract:
Discussed is a display device including a wiring substrate disposed with a first electrode; a conductive adhesive layer disposed between the wiring substrate and a second electrode; and a plurality of semiconductor light emitting devices coupled to the conductive adhesive layer, and electrically connected to the first electrode and the second electrode, wherein at least one of the plurality of semiconductor light emitting devices comprises a first conductive electrode and a second conductive electrode disposed to be separated from each other, the at least one of the semiconductor light emitting devices having a lateral surface, and wherein the second conductive electrode extends beyond the lateral surface of the at least one of semiconductor light emitting devices.
Abstract:
Discussed is a display device including a wiring substrate having a first substrate layer and a second substrate layer, a conductive adhesive layer configured to cover the wiring substrate, and a plurality of semiconductor light emitting devices coupled to the conductive adhesive layer, and electrically connected to a first electrode and a second electrode, wherein the first electrode is disposed at the first substrate layer, and the second substrate layer includes one surface facing the conductive adhesive layer and the other surface covering the first electrode, and an auxiliary electrode electrically connected to the first electrode and the second electrode are disposed on one surface of the second substrate layer.
Abstract:
The present invention provides a display device including a substrate, a wiring electrode disposed on the substrate, and a plurality of semiconductor light emitting devices electrically connected to the wiring electrode, an anisotropic conductive layer disposed between the semiconductor light emitting devices and made of a mixture of conductive particles and an insulating material, and a light transmitting layer formed between the semiconductor light emitting devices. And the anisotropic conductive layer is formed in plurality, and any one of the plurality of anisotropic conductive layers is formed to surround one semiconductor light emitting device or to surround a plurality of semiconductor light emitting devices adjacent to each other.
Abstract:
Discussed is a display device, including a substrate, a wiring electrode disposed on the substrate, a plurality of semiconductor light-emitting elements electrically connected to the wiring electrode, an anisotropic conductive layer disposed between the plurality of semiconductor light-emitting elements and formed of a mixture of conductive particles and an insulating material; and a buffer portion disposed on a lower surface of a semiconductor light-emitting element of the plurality of semiconductor light-emitting elements so as to allow the wiring electrode and the semiconductor light-emitting element to be spaced apart by a predetermined distance, and provided with at least one hole, wherein the mixture of the conductive particles and the insulating material is disposed inside the at least one hole, and the wiring electrode is electrically connected to the semiconductor light-emitting element through conductive particles disposed inside the at least one hole.
Abstract:
The present invention relates to a display device and, particularly, to a display device using a semiconductor light emitting element. The display device according to the present invention comprises: a substrate at which a wire electrode is formed; a plurality of semiconductor light emitting elements electrically connected to the wire electrode; a plurality of fluorescent material layers for converting a wavelength of light; a wavelength converting layer which has a plurality of partition wall portions formed between the plurality of fluorescent material layers and is disposed to cover the plurality of semiconductor light emitting elements; and a color filter which has a plurality of filtering portions for filtering blue, green, and red colors, and is disposed to cover the wavelength converting layer, wherein at least one of the plurality of filtering portions is configured to have a width different from those of the other filtering portions.