Abstract:
A disclosure of the present specification provides a method for determining whether to drive a symbol level interference canceller on the basis of a network support. The method comprises the steps of: determining whether to turn on the symbol level interference canceller on the basis of condition information on at least one between a serving cell and an interference cell; driving the symbol level interference canceller according to the determination; and determining whether to turn off the symbol level interference canceller, when the condition information has changed, while driving the symbol level interference canceller.
Abstract:
One disclosure of the present specification provides an interference cancellation reception method. The interference cancellation reception method can comprise the steps of: cancelling an interference caused by a cell-specific reference signal (CRS) from a neighboring cell which is mixed within a signal received from a serving cell; blind-detecting a parameter related to a demodulation reference signal (DMRS) so as to discover whether the signal from the neighboring cell mixed within the received signal is a data channel modulated on the basis of the DMRS; cancelling an interference between the detected DMRS signal and a DMRS signal of the serving cell when the DMRS is detected on the basis of the DMRS-related parameter; blind-detecting a modulation order for the data channel from the neighboring cell; and receiving only the signal from the serving cell through the interference cancellation by the data channel from the neighboring cell on the basis of the modulation order.
Abstract:
The present invention provides a method for measuring a location. The method comprises: receiving, by a User Equipment (UE) and from a serving cell, information on a bandwidth allocated for a positioning reference signal (PRS); receiving, by the User Equipment (UE) and from at least one or more neighbor cells, information on a bandwidth allocated for a PRS; determining whether there is a difference between the bandwidths; and measuring, by the UE and based on a result of the determination a timing difference between PRSs transmitted from the serving cell and the at least one or more neighbor cells.
Abstract:
The present disclosure provides a method of performing a measurement. The method of performing a measurement may include the steps of: continuing a measurement on received signal strength indication (RSSI) for sections corresponding to the multiple of an almost blank subframe (ABS) pattern when a measurement subframe pattern representing a subframe to be measured with respect to a serving cell to which enhanced inter-cell interference coordination (eICIC) is applied is not received; averaging measurement results for the sections corresponding to the multiple of the ABS; and transmitting the average of the measurement results to the serving cell.
Abstract:
One embodiment of the present specification provides an interference-removed reception method. The interference-removed reception method may comprise the steps of: receiving, from a serving cell, interference removal support information comprising transmission power information on the any channel of a neighboring cell; estimating the channel of the serving cell; receiving data by decoding the channel of the serving cell; and removing interference by the any channel of the neighboring cell, which is comprised in the received data, by using the transmission power in the received interference removal support information.
Abstract:
One embodiment of the present specification provides a method for transmitting network support information in a serving cell in order to remove interference of a terminal. The method for transmitting the network support information comprises the steps of: enabling the serving cell to select a first terminal and a second terminal to which a multi-user multiple input multiple output (MU-MIMO) is applied; enabling the serving cell to select different codewords for a downlink data channel to the selected first and second terminals; enabling the serving cell to determine whether the first terminal can remove the interference; and transmitting, to the first terminal, the network support information for supporting the interference removal using the downlink data channel to the second terminal if the first terminal can remove the interference.
Abstract:
One embodiment of the present specification provides an interference-removed reception method. The interference-removed reception method may comprise the steps of: encoding, in a binary in a physical channel, stored information for an attacker cell which causes interference; performing a comparison between the encoded binary and a new binary in the physical channel received from the attacker cell; and if the binaries match, removing interference caused by the new binary in the physical channel received from the attacker cell by using the encoded binary, and thereby receiving a signal from a serving cell.
Abstract:
According to one embodiment of the present specification, a user terminal is provided. The user terminal can comprise: a tunable antenna capable of adjusting a band; a diplexer connected to the tunable antenna to synthesize and separate sub-carriers; one or more antenna switches connected to the diplexer to synthesize and separate low-band sub-carriers and middle-band and high-band sub-carriers; and a sub-carrier processing unit connected to the one or more antenna switches to synthesize and separate a plurality of low-band sub-carriers, a plurality of middle-band sub-carriers and a plurality of high-band sub-carriers. A low-noise amplifier can be connected to the sub-carrier processing unit in order to prevent an increase in a reception sensitivity loss and a noise index occurring on a reception path of the diplexer, the one or more antenna switches and the sub-carrier processing unit.
Abstract:
A method of reducing transmission power. The method is performed by a user equipment and includes calculating a maximum power reduction (MPR) on maximum output power for transmission with non-contiguous resource allocation in a single component carrier; and transmitting a signal based on the MPR. The MPR is determined according to the following equation: MPR=CEIL {MA, 0.5}, the CEIL being a function of rounding up by 0.5. The MA is determined according to the following equations: MA=(8.0−10.12*A) when 0
Abstract:
A method of providing information for cell measurements. A first cell configures a subframe for performing a first measurement with respect to a first cell. A first position performing the first measurement is different from a second position performing a second measurement with respect to a second cell. The method includes transmitting, from the first cell to a user equipment (UE), first pattern information indicating the first position and second pattern information indicating the second position. A first subframe corresponding to the first pattern information is included in non-Almost Blank Subframe (ABS) subframes of the first cell, and a second subframe corresponding to the second pattern information is included in ABS subframes of the first cell. The ABS subframes of the first cell are configured as a first subframe at each of 8 subframes of the first cell.